
Atomic partitioning schemes for wavefunction analysis
and effective atomic orbitals

Pedro Salvador

Institut de Quimica Computacional i Catalisis i Departament de Quimica,
Universtitat de Girona, Facultat de Ciencies,

c/M Aurelia Capmany 69, 17003, Girona
email:pedro.salvador@udg.edu

CTTC2019 School, Quito, 29-30 June 2019



What is a molecule?

A system of electrons and nuclei (Physicist picture)

Physical Information:

Hamiltonian, Wavefunction (density) Hermitian operators
(functionals) associated to observables and their expectation values

A system of bonded (interacting) atoms (Chemist picture)

Chemical Information:

Bonding interaction, steric repulsion, polarity, functional group,
aromaticity...

We aim to interpret the results of ab initio calculations in classical
chemical terms



The Atom in the Molecule

Atoms are the building blocks of chemistry

Not observables in Quantum Mechanics.

Is there a unique atom in molecule (AIM) definition?

Any AIM is a conceptual construct but with an irrefutable utility.

Taking advantage of AIM, quantum chemist have defined bond orders
indexes, atomic populations, bond orders descriptors, energy
partitioning, aromaticity indexes, among others.

Assigning physical quantities to the individual atoms

Any physical quantity is written as expectation value of one- or
two-electron operators

Which is the physical quantity that can be related to a given chemical
concept?



The Atom in the Molecule

The nucleus is always considered as part of the atom, so the differ-
ences always arise in how the physical space (or the Hilbert-space) is
subdivided into atomic shares.

In the MO-LCAO approach (Molecular Orbitals as Linear Combination
of Atomic Orbitals), the atom may be identified with the subspace of
the basis functions attached to it. Such approaches are the so-called
Hilbert-space analyses.

A different strategy is to subdivide the physical 3D space into atomic
regions or domains, which represent the atom. They may be defined dis-
joint, like in Bader’s “quantum theory of atoms in molecules” (QTAIM),
or may be allowed to overlap, like in the different variants of the“fuzzy”
atoms

In Hilbert-space analysis one deals with the AO matrix representation
of operators. In 3D-space analysis one usually manipulates density
functions



Hilbert-space analysis

In the LCAO framework, the MOs are expanded on a finite set of
atomic-centered one-electron functions {χµ(r)} as

ϕi (r) =
∑
µ

cµiχµ(r)

The set of functions centered on a given atom conform an atomic Hilbert

subspace {χµ(r)}µ∈A

In this context, the atom may be defined by its nucleus and the
subspace of one-electron basis set centered on it.

The molecular orbitals can be also rewritten as a sum of atomic
contributions, coming from each atomic Hilbert’s subspace.

ϕi (r) =
∑
A

∑
µ∈A

cµiχµ(r)



Hilbert-space analysis

The first-order electron density can be written as

ρ(r) =
∑
µν

Dµνχ
∗
ν(r)χµ(r),

where D is the density matrix in the atomic orbital (AO) representation. By

integrating the density one obtains the total number of electrons

N =

∫
ρ(r)dr =

∑
µν

Dµν

∫
χ∗ν(r)χµ(r)dr =

∑
µν

DµνS
AO
νµ =

∑
µ

(DSAO)µµ,

where matrix SAO is the atomic overlap matrix in AO basis, with elements

SAO
νµ =

∫
χ∗ν(r)χµ(r)dr

The basis functions that play the role of AOs in electronic structure calcu-
lations, usually Gaussian-type orbitals (GTO) or Slater-type orbitals (STO)
do exhibit overlap.



Hilbert-space analysis

Now, by systematizing the summation over the AOs according to which
atom A they are assigned to, one can readily obtain the so-called
Mulliken’s atomic gross populations, NA

N =
∑
A

∑
µ∈A

(DSAO)µµ =
∑
A

NA.

Alternatively, one can also start from the previous expression in terms of
two AO indices and systemtize them over each atom A and B, and write

N =
∑
A

∑
B

∑
µ∈A

∑
ν∈B

DµνS
AO
νµ =

∑
A

NAA +
∑
A6=B

NAB

where NAA and NAB + NBA are Mulliken’s net and overlap
populations, respectively.



Hilbert-space analysis

Pros

The integrations are analytical for Gaussian functions.

Straightforward implementation and low computational cost

The errors associated with any additional numerical integration are
avoided.

Cons

Basis set dependency.

It may show unphysical results for basis sets without marked atomic
character e.g. diffuse basis functions.

Ill-defined in the complete basis set limit (CBS).

Inapplicable beyond the LCAO-MO approximation e.g. if plane waves
are used to expand the MOs of the system.



Hilbert-space analysis

Beyond Mulliken Analyses

Most of the problems associated with Mulliken analyses originate
from the overlap of the underlying atomic basis.

When basis set without marked atomic character are used:
Overlap populations or bond orders can be negative
Effective atomic orbitals with occupations not in the [0,1] range

Use of orthogonal basis

The AO basis can be transformed to an orthogonal basis, and the MO
expanded into this orthonormalized basis set.

Symmetric orthogonalization of Lowdin (and a number of variants,
see e.g. Comput. Theor. Chem. 1008 (2013) 15)

Natural orbitals and Natural Population analysis of Weinhold

Quasi-atomic orbitals of Ruedenberg, etc..



Hilbert-space analysis in orthogonal basis

For instance, in the Lowdin basis one has (S matrix in AO basis)

χL
i (r) =

∑
µ

S
−1/2
µi χµ(r) χµ(r) =

∑
i

S
1/2
iµ χL

i (r)

Replacing the original AOs by the Lowdin orthonormalized ones

ρ(r) =
∑
µν

Dµνχ
∗
ν(r)χµ(r) =

∑
µν

Dµν

[∑
i

S
1/2 ∗
iν χL ∗

i (r)

]∑
j

S
1/2
jµ χL

j (r)

 =

=
∑
µν

∑
ij

S
1/2
jµ DµνS

1/2 †
νi χL∗

i (r)χL
j (r) =

∑
ij

DL
jiχ

L∗
i (r)χL

j (r)

where DL
ji =

[
S1/2DS1/2 †

]
ji

.

In this new basis,the integration of the density leads to

N =

∫
ρ(r)dr =

∑
ij

DL
ji δij =

∑
i

DL
ii



Hilbert-space analysis in orthogonal basis

Lowdin’s atomic populations are obtained by systematizing the indices of
the orthogonal AO basis, whose elements are also associated to the atomic
centers, i.e.

{
χL
i (r)

}
i∈A.

N =
∑
A

∑
i∈A

(DL)ii =
∑
A

NL
A

Notice that in an orthogonal basis there is no overlap population.

Assigning orthogonalized AOs to atomic centers might be ambiguous in
the case of extended basis sets.



Real-space analysis

Disjoint domains

Voronoi cells (e.g. VDD charges)

Quantum Theory of Atoms in Molecules (QTAIM)

Topological analysis of vector fields other than ρ(r)

Overlapping domains (“fuzzy” atoms)

Hirshfeld, Hirshfeld-Iterative, etc...(Ayers)

Becke’s constructs, Becke-ρ, TFVC

Iterative stockholder Atoms (ISA), etc...

3D-space partitions make the results virtually basis set independent.



QTAIM

Topological analysis of ρ(r)
Atomic basins from the zero-flux condition

∇ρ(r) · ~n(r) = ~0 ∀r ∈ S(r)

∫
f (r) dr =

∑
A

∫
ΩA

f (r) dr∫∫
f (r, r′) drdr′ =

∑
AB

∫
ΩA

∫
ΩB

f (r, r′) drdr′



QTAIM

Pros

Strong physical background (see notes from A.M. Pendás)

Only information from ρ(r) is required.

Cons

Complex shape of the atomic domains leads to cumbersome
numerical integrations (but more and more efficients codes are being
developed, e.g. AIMAll)



Overlapping domains

One can define a weight function for each atom at each point of the space
satisfying

wA(r) > 0 and
∑
A

wA(r) = 1

Atoms can share the 3D-space (overlap) in general.

In QTAIM wA(r) = 1 if r ∈ ΩA and wA(r) = 0 otherwise.∫
f (r) dr =

∑
A

∫
wA(r)f (r) dr

∫∫
f
(
r, r′
)
drdr′ =

∑
AB

∫∫
wA(r)wB(r′)f

(
r, r′
)
drdr′



Different “fuzzy” atom approaches

Hirshfeld approach, TCA 44 129 (1977).

Makes use of reference (promolecular) spherically-averaged atomic
densities, ρ0

A(r)

Superposition of promolecular atomic densities at the actual atomic
positions of the molecule defines the promolecular total density ,
ρ0(r) =

∑
B ρ

0
B(r)

Then, in the classical Hirshfeld method

wA(r) =
ρ0
A(r)∑

B ρ
0
B(r)

Hirshfeld-Iterative schemes usually impose
∫
ρ0
A(r)dr = NA 6= ZA, e.g.

JCP 126 144111 (2007).

ρ0,NA
A (r) = αρ

0,int(NA)+1
A (r) + (1− α)ρ

0,int(NA)
A (r), α = NA − int(NA)



A not-so-well-known problem of Hirshfeld’s wA(r)
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Becke’s constructs, JCP 88 2457 (1988)

Originally devised for effective numerical integration of
tree-dimensional functions of marked atomic character.

Makes use of the so-called Voronoi polyhedra

The sharp boundaries of the Voronoi cells are substituted by soft
functions that ultimately define the atomic weigths

By construction, wbecke
A (rA ) = 1 and ∂wbecke

A (r)/∂(r)|r=RA
= 0.



Becke’s constructs

The scheme can be formulated as follows for the simplest case of a two
nuclei system (A and B). For any point of the space one can define the
following quantity

µAB =
rB − rA
RAB

where RAB is the internuclear distance and rA and rB represent the
distance of that point to nucleus A and B.

  

A BRAB

  





Becke’s constructs

The simple step function

sA(µAB) =

{
1 −1 ≤ µAB ≤ 0
0 0 < µAB ≤ 1

can be used to define the sharp Voronoi cell of atom A in this case.

The step function can be replaced by a continuous, monotonically
decreasing function in the range [-1,1], and fulfilling the requirements
s(-1)=1 and s(+1)=0 in order to define fuzzy Voronoi cells

For that purpose Becke suggested the simple polynomial function

skA(µAB) =
1

2
[1− fk(µAB)]

where

f1(µ) =
3

2
µ− 1

2
µ3



Becke’s constructs

And devised an iterative process to obtain shaper cutoff profiles

fk(µ) = f [ fk−1(µ)]

The integer k is known as the stiffness parameter; the larger the steeper
the cutoff profile is.
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Becke constructs

In order to account for the different atomic sizes in heteronuclear systems,
one can use the same cutoff function but introduce a shifted coordinate.
Becke originally uses

νAB = µAB + aAB(1− µ2
AB) where aAB =

1− χ2
AB

4χAB

−1/2 ≤ aAB ≤ 1/2 to ensure that 0 ≤ wA(r) ≤ 1 and
R0
A

R0
B

= χAB

For overlapping atoms the position of the interatomic boundaries
between all pairs of atoms must be specified.

A distance criterion is used, namely if RAB > 2(R0
A + R0

B) then

χAB = 1. Otherwise, the atoms are neighbors and χAB =
R0
A

R0
B



Becke constructs

The set of atomic radii R0
A determines the relative size of the atomic

Voronoi cells

The parameter k controls the shape of the cutoff profile.

Becke used Bragg-Slater radii and k=3 on the basis of more accurate
integrations.

Pros

Numerical integrations in the fuzzy domains are very efficient

Does not required the use of promolecular atomic densities

Cons

The use of a fixed atomic radii is a limitation of this AIM model
because the same atoms are treated on equal footing in different
chemical environments

Highly arbitrary definition of the atom in the molecule



Becke and QTAIM

Topological fuzzy Voronoi cells (TFVC)

Instead of using a set of fixed radii to define χAB one can use position
of the minimum of the density along the internuclear axis connecting
two neighbor atoms.

The following alternative transformation is monotonic for any value of
χAB .

ν
′
AB =

1 + µAB − χAB(1− µAB)

1 + µAB + χAB(1− µAB)

Two atoms are not considered neighbors if their midpoint is closer to
a third atom. Empirical set of radii no longer needed.



TFVC vs QTAIM

Partial atomic charges for a set of hydrides (LiH to HCl)
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Conditions for proper AIM definitions

An AIM should be able to account for complex bonding mechanisms
(e.g. harpoon effect on LiH)



Conditions for proper AIM definitions

In aromatic systems, the delocalization index (bond order) should be
larger in para- position than in meta-.

Identifying more conditions is desirable...



Real-space analysis: a different perspective

Instead of partitioning the physical space one can make use of the atomic
weight functions wA(r) to define effective atomic density functions:

NA =

∫
wA(r) ρ(r)dr → ρA(r) ≡ wA(r)ρ(r)

such that integration over the whole space leads to the corresponding
atomic contribution

NA =

∫
ρA(r)dr

In the case of two-electron functions such as the so-called exchange-correlation
pair density, ρxc(r1, r2), the same strategy naturally leads to atomic and di-
atomic densities

ρxc,AB(r1, r2) ≡ wA(r1)wB(r2)ρxc(r1, r2) + A↔ B



Real-space analysis: a different perspective

The delocalization index (or bond order) between atoms A and B is readily
obtained by integrating the diatomic exchange-correlation pair density

DIAB =

∫ ∫
ρxc,AB(r1, r2)dr1dr2

Similarly, diatomic exchange-correlation energy contributions in the context
of the Interacting Quantum Atoms (IQA)

Exc,AB = −1

2

∫ ∫
ρxc,AB(r1, r2)

|r1 − r2|
dr1dr2

Atomic and/or diatomic terms could also be easily grouped into molecular
fragments or functional group contributions.



A different perspective for Mulliken analysis, too

Such effective density functions can also be defined in the context of Hilbert-
space analysis, again when expressed in the AO basis. Thus, by defining the
effective atomic density as

ρA(r) ≡
∑
µ∈A

∑
ν

Dµνχ
∗
ν(r)χµ(r)

one can recover Mulliken’s gross population of the atom upon integration

NA =

∫
ρA(r)dr

But Mulliken-type effective atomic densities are not well behaved in general
(e.g. can be negative), only the one corresponding to the net atomic density:

ρAA(r) ≡
∑
µ∈A

∑
ν∈A

Dµνχ
∗
ν(r)χµ(r)



Real-space analysis: working on MO basis

The realization of the quantities obtained in real-space analysis is usually
carried out in a molecular orbital basis, {φi (r)}.
Let us consider now the first-order density matrix in MO basis

ρ(r; r′) =
∑
ij

Djiφ
∗
i (r)φj(r′)

It can also be written in diagonal form, leading to the so-called natural
orbitals,{Φi (r)}, and natural occupations, {ni}.

ρ(r; r′) =
∑
i

niΦ
∗
i (r)Φi (r′)

The electron density is achieved by doing r = r′,

ρ(r) ≡ ρ(r; r)



Real-space analysis: working on MO basis

Just as we’ve seen before, we can make use of the atomic effective ma-
trices to obtain real-space quantites upon integration, such as the atomic
populations

NA =

∫
ρA(r)dr =

∑
ij

Dji

∫
wA(r)φ∗i (r)φj(r)dr =

∑
ij

DjiS
A
ij = tr(DSA).

As the summation indices run over all molecular orbitals, the expressions
can be conveniently written in matrix form, in terms of the atomic overlap
matrix in MO basis, SA.

To further illustrate the formal use of the effective atomic densities, let us
consider the particular case of a restricted single-determinant wavefunction
in singlet state. In this case, the exchange density can be written in terms
of the first-order density matrix

ρx(r1; r2) = −1

2
ρ(r1; r2)ρ(r2; r1)



Real-space analysis: working on MO basis

We construct the effective diatomic exchange density for centers A and B

ρx ,AB(r1; r2) = −1

2
ρA(r1; r2)ρB(r2; r1) + A↔ B

and obtain again their Delocalization Index upon integration, expressed in
matrix form in the MO basis.

DIAB =

∫ ∫
ρx ,AB(r1, r2)dr1dr2 =

∑
ijkl

DjiS
A
ikDklS

B
lj = tr(DSADSB).

It can be readily seen that in natural orbital (NO) basis it reads

DIAB =
∑
ij

ninjS
A
ij S

B
ji .



Hilbert-space analysis in MO basis?

Let us introduce the atomic truncation matrix, ηA, in AO basis, which has
zero elements except if i = j , i ∈ A. With it, one can rewrite Mulliken’s
atomic population without restrictions in the summation indices

NA =
∑
ν

∑
µ∈A

DνµS
AO
µµ =

∑
νµλ

DνµS
AO
µλ η

A
λν = tr(DSAOηA).

Comparing this expression in matrix form with the previous real-space one,
we can identify the atomic overlap matrix (still in AO basis) SA ≡ SAOηA.

Transforming the expressions to the MO basis, making use of the MO co-
efficients one can stablish direct comparison with the matrix representation
of the real-space atomic overlaps in MOs

SA ⇐ C†SAOηAC.



Hilbert-space analysis in MO basis?

Such mapped Mulliken-type atomic overlap matrix is nonhermitian

SA † = C†ηASAOC 6= SA,

However, one can perform similar analogy in the Lowdin basis and obtain a
hermitian atomic overlap matrix

SA ⇐ C†S1/2ηAS1/2 †C.

This is one of the reasons that make Lowdin-type analysis more robust in
terms of basis set dependence than the Mulliken-type approaches.

As a final message, we have seen that by using approapriate mappings
one can readily use the same real-space in MO/NO basis for Hilbert-space
approaches.



Effective atomic orbitals:

the atomic orbitals of the topological
atom



The effective atomic orbitals

One very useful tool to characterize the state of the atom within the
molecule are the so-called effective atomic orbitals (eff-AOs),
Mayer JCP 6249 (1996).

In this approach one obtains for each atom a set of orthogonal
atomic hybrids and their respective occupation numbers, adding up to
the net population of the atom.

These atomic hybrids closely mimic the core and valence shells of the
atom, as anticipated on the basis of classical notions of electron
configuration of the atom/fragment within the molecule.

The general formalism was introduced two decades ago in the
framework of Hilbert-space analysis by Mayer, JCP 6249 (1996) and
later generalized to QTAIM and real-space analysis in general.



Theory

Let us consider a single-determinant WF formed by n orthonormalized
doubly occupied orbitals ϕi (r), i = 1, 2 . . . , n, and a “fuzzy” division of
the 3D-space into Nat atomic domains ΩA defined e.g., by a continuous
atomic weight function wA(r), fulfilling wA(r) > 0 and

∑
A wA(r) = 1.

Let us for each atom A (A = 1, 2, . . . ,Nat) form the n × n Hermitian
matrix QA with the elements

QA
ij =

∫
wA(r)ϕ∗i (r)wA(r)ϕj(r)dr.

The matrix QA is essentially the “net atomic overlap matrix” in the basis
of the MO-s ϕi . Furthermore, for each atom A we define the
“intraatomic” part ϕA

i of every MO ϕi as wA(r)ϕj(r). Thus
QA

ij = 〈ϕA
i |ϕA

j 〉 i.e., QA is the overlap matrix of the orbitals ϕA
i .



Theory

We diagonalize the Hermitian matrix QA by the unitary matrix UA:

UA†QAUA = ΛA = diag{λAi } .

It can be shown that every λAi ≥ 0, as is the case for an overlap matrix.
The dimension of the matrix also indicates the max. number of non-zero
eigenvalues that can be obtained (n), disregarding the size of the
underlying set of AOs

For each atom A we can define nA (nA ≤ n) “effective atomic orbitals
χA
µ(r) as linear combinations of the “intraatomic” parts ϕA

i (r) of the MO-s
as

χA
µ(r) =

1√
λAµ

n∑
i=1

UA
iµϕ

A
i (r) ; µ = 1, 2, . . . , nA ,

where nA is the number of non-zero eigenvalues λAi .



Properties of the eff-AOs

They are orthonormalized within the atomic domain:

〈χA
µ|χA

ν 〉 = 〈 1√
λAµ

n∑
i=1

UA
iµϕ

A
i |

1√
λAν

n∑
j=1

UA
jνϕ

A
j 〉 =

1√
λAµλ

A
ν

n∑
i,j=1

(UA†)µiQ
A
ij U

A
jν

=
1√
λAµλ

A
ν

λAµδµν = δµν

The sum of occ. numbers equals the net atomic population of the atom

In the case of disjoint domains (QTAIM), orbitals χA
µ(r) differ from zero only

in the atomic domain of atom A, thus

〈χA
µ|χB

ν 〉 = 0

In the case of disjoint domains, QA is also the atomic overlap matrix of the
MOs, as wa(r)2 ≡ wa(r).



Properties of the eff-AOs

The eff-AOs of atom A can also be obtained even if no atom-centered
basis functions where used in the original MO description, see CPL 563
97 (2013).

They can also be obtained in the AO basis from the diagonalization of the
matrix PSA, where P is the LCAO density matrix. This alternative permits
the straightforward generalization to correlated WFs.

Alternatively, in the natural orbital representation, the symmetrized form

U′
A†
η1/2QAη1/2U′

A
= ΛA = diag{λAi }

that also produces the same set of eigenvalues, where η is the diagonal
matrix of the natural occupations.



Properties

In practice, the dimension of the eff-AO basis has nothing to do with
the dimension of the LCAO basis (if any) used in the original
calculations.

The maximum number of eff-AOs that can be obtained is Nat × n,
which can be less that the total number of the LCAO basis functions.

Experience shows that the number of eff-AOs with significant
occupation numbers on each atom is limited, and typically much
smaller than the number n of the doubly occupied orbitals in the
whole molecule.

The remaining eff-AOs with very small occupation numbers have a
marginal significance.



Visualization of the eff-AOs

Figure 1: Occupied oxygen eff-AOs in alanine molecule (TFVC)



Visualization of the eff-AOs

Figure 2: Highly occupied carbon (a), nitrogen (b), and oxigen (c) orbitals in the HCNO molecule (QTAIM)



The eff-AOs as basis functions

The definition of the eff-AOs can be trivially inverted, and one gets

ϕA
j (r) =

nA∑
µ=1

UA∗
jµ

√
λAµχ

A
µ(r) = wA(r)

nA∑
µ=1

UA∗
jµ

√
λAµ χ(r)µ .

Owing to this result, the MO-s can be written as linear combinations of
the “effective AO-s” of different atoms:

ϕi (r) =
Nat∑
A

wA(r)ϕA
i (r) =

Nat∑
A

nA∑
µ=1

UA∗
iµ

√
λAµχ

A
µ(r) =

Nat∑
A

nA∑
µ=1

cAµiχ
A
µ(r) .



Hilbert-space analysis within QTAIM

The atomic population calculated by Mulliken analysis in the basis of the
“effective AO-s” is equal to that obtained by the 3D QTAIM analysis.

QAIM
A =

∫
ΩA

ρ(r)dv = 2

∫
ΩA

n∑
i=1

|ϕi (r)|2dv = 2
n∑

i=1

∫
ΩA

|ϕi (r)|2dv = 2
n∑

i=1

QA
ii .

QLCAO
A =

∑
ν∈A

Dνν = 2
n∑

i=1

∑
ν∈A

|Cνi |2 = 2
n∑

i=1

nA∑
µ=1

∣∣∣UA∗
iµ

√
λµ

∣∣∣2 = 2
n∑

i=1

QA
ii

Analogously, Wiberg bond orders calculated on the basis of eff-AOs are exactly

equal to the Delocalization index, and so on.

Similar relationships are also found for fuzzy atomic domains such as
TFVC, the only difference being the eff-AOs do not form and
orthonormalized set.



Formal oxidation states from real-space
analysis



Formal oxidation states

The concept of oxidation state (OS) is ubiquitous in transition metal
(TM) chemistry and in the study of redox and catalytic reactions.

Many properties such as reactivity, spin-state, spectroscopic and
geometrical features of TM complexes are often rationalized on the
basis of the oxidation state of the metal center.

Formal OS are obtained by assigning integer number of electrons to
the atoms/ligands according to some rules. In complicated bonding
situations involving non-innocent ligands or in intermediates or
transition states of catalytic reactions the formal OS assignment may
be rather ambiguous.



IUPAC’s revision of the concept

A revision of the concept of OS was requested to a number of experts.
Pavel Karen’s IUPACs Technical Report summarized their conclusions.

New definition was provided, along with algorithms to determine the
OS in molecular systems and solids.

The OS of a bonded atom equals its charge after ionic
approximation.

P. Karen et al, Pure Appl. Chem. 2014 86 1017-1081.
P. Karen, Angew. Chem. Int. Ed. 2015, 54, 2-13



Lewis structure as a starting point

The Ionic Aproximation

For practical applications, to the more electronegative atom,
according to Allen’s electronegativity scale.

In bonds involving two atoms of the same element, divided equally.

Limitations/ambiguities of the new definition

Comes with exceptions for the application of the IA (when the atom
with higher Allen EN is a net acceptor of electrons).

All electrons (σ or π) of a bond are necessarily assigned to the same
atom after the IA.

Different Lewis structures may lead to different OS assignation.

EN is regarded as a genuine free atom property, hence same atoms are
treated on equal footing irrespective of their chemical environment.



Conventional population analysis fail

Thom et al. illustrated how neither Mulliken charges nor Mulliken spin
populations match in general with the oxidation state.

Mulliken (left) and TFVC (right) charges for a set of transition metal
complexes.

Cl− H2OHS H2OLS CN− CO Cl− H2OHS H2OLS CN− CO

VII 0.98 1.12 - 0.05 0.64 1.60 1.76 - 1.60 1.64
MnII 1.10 1.24 1.18 0.10 0.64 1.36 1.64 1.70 1.53 1.53
MnIII 0.93 1.58 1.52 0.35 0.80 1.46 2.05 2.09 1.58 1.67
FeII 0.86 1.22 1.15 0.01 0.51 1.27 1.63 1.77 1.46 1.44
FeIII 0.99 1.64 1.48 0.24 0.66 1.44 2.06 1.98 1.49 1.58
NiII 0.99 - 1.08 -0.19 0.31 1.27 - 1.59 1.24 1.30
ZnII 1.02 - 1.06 -0.03 0.52 1.25 - 1.45 1.15 1.19



ab initio determination of oxidation states

A number or empirical approaches to correlate atomic distances or
populations with transition metal (TM) oxidation states
(bond-valence sum scheme).

Sit et al.[1] used projection techniques to obtain d orbital populations
of central metal in transition metal (TM) complexes

Sit et al.[2] and Vidossich et al. [3] also used the positions of the
centers of gravity of maximally-localized Wannier functions/localized
orbitals.

Localized Orbital Bond Analysis (LOBA) [4]: MO localization
followed by population analysis

ELIBON (electron-localizability-based oxidation number)[5], usually
applied to solids.

1. Inorg. Chem. 2011, 50, 10259 2. Chem. Eur. J. 2011, 17, 12136 3. Dalton Trans., 2014, 43, 11145 4. Phys. Chem.
Chem. Phys, 2009, 11, 11297 5. J. Solid State Chem. 2008, 181, 1983.



Using effective fragment orbitals (effOs)

Define atoms/fragments/ligands of the system

wΓi
(~r) ≡

∑
A∈Γi

wA(~r) SΓi 6=
∑
A∈Γi

SA

Obtain spin resolved effOs for all Γi fragments

Distribute the number of electrons among the fragments according to
occupations of their effOs

Get most appropriate atom/ligand Oxidation States and R% index.

If necessary, the OS for the individual atoms of a given fragment can
be subsequently obtained by getting the eff-AOs for every atom and
distributing the number of alpha and beta electrons that were
assigned to the ligand in the previous step.



EOS analysis: a very simple scheme

E. Ramos-Cordoba, V. Postils, P. Salvador, JCTC 2015, 11, 1501.



EOS analysis at a glance

Alpha effective atomic orbitals for Fe(CN)3−
6 at the B3LYP/6-31G(d) level

of theory.
Total number of alpha electrons: 54



EOS analysis at a glance

Beta effective atomic orbitals for Fe(CN)3−
6 at the B3LYP/6-31G(d) level

of theory.
Total number of beta electrons: 53



EOS analysis at a glance

Oxidation states, last occupied eff-AO (LO) and first unoccupied eff-AO
(FU) orbitals for Fe(CN)3−

6 .

From the ”frontier” occupation numbers one can derive a simple index
R(%) to quantify how close is the electron distribution provided by the
actual wavefunction to the formal picture of the oxidation states.

R(%) ≡ 100min(1,max(0, λσLO − λσHU + 1/2), for σ = α, β.



Beyond spin density analysis (ρsFe = 2.05)

Fe(V)                  O2- 

σ λσ

α 0.934 0.932 0.930 0.495 0.451
β 0.163 0.393 0.462 0.322 0.349

α− β 0.771 0.539 0.468 0.173 0.102

d-type eff-AO occupations of the Fe atom in the [Fe(Pytacn)O(OH)]2+ species.



High oxidation states



Justification of the ionic model in EMFs



Justification of the ionic model in EMFs

Cage Isomer Cluster
Spin 

state

EOS 

Cage
R(%)

C66 4059 Sc2 singlet -6 100

C66 4338 Sc2 singlet -4 88

C68 6073 Sc2C2 singlet -4 92

C80 IPR 5 Sc2C2 singlet -4 100

C80 ih Sc3C2 doublet -6 100

C78 d3h IPR ScN3 singlet -6 100

C82 C2 U triplet -4 64

C82 C2v U triplet -3 67



Hapticity and aromaticity



Hapticity and aromaticity

The formal charge on the ligands depend upon their local spin and
can be rationalized in terms of Huckel and Baird aromaticities

Partial aromaticity can be invoked for strong deviations from planarity
(lower hapticities)



Breakdown of the Ionic Approximation: carbenes

s bond

p bond

-1

-1

TM CR2

TM CR2

+1

+1

TM CR2

TM CR2

-1+1

+1-1

Schrock-type Fischer-type

TM CR2

TM CR2

-1+1

Radical (singlet)

M(+2) CR2(-2) M(0) CR2(0) M(+1) CR2(-1)

The IA can not afford for a formal neutral carbene, where the two
electrons of the σ bond are assigned to the carbene and the π ones to
the metal center.



Breakdown of the Ionic Approximation: adducts

EOS

P(NC2H4)

P(C4H4)

+1

-1

Global R(%) = 81.9%

lLO / lFU

P(NC2H4)

P(C4H4)

0.948 / 0.308

0.627 / 0.030

P(NC2H4)-P(C4H4), 55



Summary

Oxidation states can be extracted from the analysis of the effective
atomic/fragment orbitals and their occupancies with a strategy of
general application (closed-shell systems, KS-DFT or correlated WFs)

The EOS method is reconciled with the empirical assignation in most
cases without any external guidance or exception.

A better empirical approach to oxidation state assignation could start
by identifying subsystems of enhanced stability in the molecular
system in the first place, according to known rules (octet, 18e,...)
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