Différences entre les versions de « VBTutorial3 »

De Workshops
Aller à la navigation Aller à la recherche
Ligne 578 : Ligne 578 :
 
<big><math> <D|H|D'>=<|...i\overline{j}...||H||...\overline{i}j...|>= -2 \beta_{ij} S_{ij}</math></big> (for <big><math>D</math>, <math>D'</math></big> differing by spin inversion of two spin-orbitals)  
 
<big><math> <D|H|D'>=<|...i\overline{j}...||H||...\overline{i}j...|>= -2 \beta_{ij} S_{ij}</math></big> (for <big><math>D</math>, <math>D'</math></big> differing by spin inversion of two spin-orbitals)  
  
[[Answer Exercise3 of tutorial 3|>> Answer]]
+
{| class="collapsible collapsed wikitable"
 +
|-
 +
!'''Answer'''
 +
|-
 +
|
 +
<math> R = \frac{1}{\sqrt{2}} (|ab\overline{c}|-|a\overline{b}c|) </math><br>
 +
<math> P = \frac{1}{\sqrt{2}} (|a\overline{b}c|-|\overline{a}bc|) </math><br>
 +
 
 +
1 - Using the thumb rules 
 +
 
 +
<big><math> <D|H|D>= -2 \sum_{i<j}^{ } \beta_{ij} S_{ij} </math>(if orbitals i and j have parallel spins)  </big>
 +
<big><math> <D|H|D'>=<|...i\overline{j}...||H||...\overline{i}j...|>= -2 \beta_{ij} S_{ij} </math>(for D, D' differing by spin inversion of two spin-orbitals</big>
 +
 
 +
It comes,<br>
 +
<big><math> <R|H|R>= \frac{1}{2} (4\beta_{bc}S_{bc} -2\beta_{ab}S_{ab} -2\beta_{ac}S_{ac})</math></big><br>
 +
<big><math> <P|H|P>= \frac{1}{2} (4\beta_{ab}S_{ab} -2\beta_{bc}S_{bc} -2\beta_{ac}S_{ac})</math></big><br>
 +
 +
<big><math> <R|H|P>= \frac{1}{2} (4\beta_{ac}S_{ac} -2\beta_{ab}S_{ab} -2\beta_{bc}S_{bc})</math></big><br>
 +
 
 +
 
 +
2 - If <math>\theta </math> > 60° ,<big> <math>\beta_{ac}S_{ac} < \beta_{ab}S_{ab}=\beta_{bc}S_{bc} </math></big> Hence <big><math><R|H|P> > 0 </math></big> (<math>\beta_{ij} < 0</math>) <br>
 +
 
 +
Finally, ground state is out of phase and the excited state is in phase.
 +
 
 +
It comes:<br>
 +
:<big><math> \Psi^{\neq} = R-P</math></big><br>
 +
:<big><math> \Psi^{\star} = R+P</math></big><br>
 +
 
 +
Expanding on the determinants
 +
:<big><math> \Psi^{\neq} = 1/\sqrt{2} (|ab\overline{c}|+|\overline{a}bc|-2|a\overline{b}c|)</math></big><br>
 +
:<big><math> \Psi^{\star} =1/\sqrt{2} (|ab\overline{c}|-|\overline{a}bc|)</math></big><br>
 +
 
 +
<math> \Psi^{\star} </math>, wave function of the excited state represent a bonding between hydrogens a and c.<br>
 +
 
 +
3- Using geometric considerations
 +
* If <math>\theta </math> = 180° ,<big> <math>\beta_{ac}S_{ac}=0</math></big> and <big><math> <R|H|P>=-(\beta_{ab}S_{ab} +\beta_{bc}S_{bc})</math> </big><br>
 +
 
 +
* If <math>\theta </math> = 60° ,<big> <math>\beta_{ac}S_{ac}=\beta_{ab}S_{ab}=\beta_{bc}S_{bc}=\beta S</math></big> and <big><math> <R|H|P>=0</math></big> <br>
 +
 
 +
4- If <math>\theta </math> = 60°, <big><math> <R|H|P>=0 = <R|H|R>= <P|H|P></math></big> <br>
 +
Hence R and P are degenerated eigenfunction of the CI Hamiltonian :  <math>E_R=E_P=0</math><br>
 +
Their linear combination <math> \Psi^{\neq}  </math> and  <math>\Psi^{\star} </math> are also degenerated, with the same value.
 +
 
 +
5- Allyl radical <math>\pi</math> system is isoelectronic to the <math>H_3</math> radical case. 
 +
R correspond to one covalent right coupling (radical on the left carbone atom). P to the radical on the right carbone.
 +
* <math> \Psi^{\neq}  </math> corresponds to the mesomery between these 2 bonding schemes.
 +
* <math>\Psi^{\star} </math> to the "through space" (a,c) electronic coupling ("long bond", the radical is centered on the middle atom).
 +
 
 +
... work in progress
 +
 
 +
To make the state degenerated in allyl radical ....
 +
 
 +
The end product obtained  from the first excited state of allyl radical ... cyclopropyl radical, that would return to a open radical upon deexcitation.
 +
 
 +
 
 +
 
 +
</big>
 +
 
 +
|}
  
 
|}
 
|}

Version du 12 juillet 2012 à 12:10

<< Return to the program


Valence Bond State correlation diagrams

Exercise 1 : Computation of state correlation Diagrams for a 3 centers / 4 electrons system

In this exercise the <math>\textrm{S}_{\textrm{N}}2</math> reaction Cl<math>{}^{-}</math> + CH3Cl -> ClCH3 + Cl<math>{}^{-}</math> will be studied in both vacuum and solution. Valence Bond State Correlation Diagrams (VBSCD) will be constructed at <math>\pi</math>-D-BOVB level. There are two parts in this exercise: basic part and optional part. The basic part is performed with MCP-DZP basis set in which the inner orbitals in Cl and C are described with MCP pseudo potential. The optional part is performed with 6-31+G* basis set, using the general specification for the xmvb input (expert users). Only reactant and transition state will be computed in this exercise, which is sufficient to build the VBSCD diagrams.

>> general guidelines for BOVB calculations