Différences entre les versions de « VBTutorial3 »

De Workshops
Aller à la navigation Aller à la recherche
Ligne 36 : Ligne 36 :
 
### Perform π-D-VBSCF calculation where <math>\pi</math> orbitals are delocalized in the whole system and the <math>\sigma</math> orbitals are kept localized (file name: rs_vac_d-vbscf). Use the L-VBSCF orbitals as initial guess;
 
### Perform π-D-VBSCF calculation where <math>\pi</math> orbitals are delocalized in the whole system and the <math>\sigma</math> orbitals are kept localized (file name: rs_vac_d-vbscf). Use the L-VBSCF orbitals as initial guess;
 
### Perform π-D-BOVB (file name: rs_vac_d-bovb) calculation with π-D-VBSCF orbitals as initial guess.
 
### Perform π-D-BOVB (file name: rs_vac_d-bovb) calculation with π-D-VBSCF orbitals as initial guess.
## Perform <math>\pi</math>-D-BOVB calculations with minimal structures for reactant (file name: rs_vac_*_rs) and product (file name: rs_vac_*_ps) with the same procedure as all-structure calculation.
+
## Perform <math>\pi</math>-D-BOVB calculations with minimal structures for reactant (file names: rs_vac_*_rs) and product (file names: rs_vac_*_ps) with the same procedure as all-structure calculation.
# Perform <math>\pi</math>-D-BOVB calculation for transition state  (file name: ts_vac_*). The procedure is the same as step 2.
+
# Perform <math>\pi</math>-D-BOVB calculation for transition state  (file names: ts_vac_*). The procedure is the same as step 2.
 
# Perform <math>\pi</math>-D-BOVB/PCM calculations for reactant:
 
# Perform <math>\pi</math>-D-BOVB/PCM calculations for reactant:
 
## Perform all-structure <math>\pi</math>-D-BOVB/PCM  (file name: rs_pcm_d-bovb) calculation for the reactant, starting directly from the <math>\pi</math>-D-BOVB orbitals computed in vacuum (2.1)
 
## Perform all-structure <math>\pi</math>-D-BOVB/PCM  (file name: rs_pcm_d-bovb) calculation for the reactant, starting directly from the <math>\pi</math>-D-BOVB orbitals computed in vacuum (2.1)
 
## Perform <math>\pi</math>-D-BOVB/PCM calculations with minimal structures for reactant  (file name: rs_pcm_d-bovb_rs) and product  (file name: rs_pcm_d-bovb), also starting from the corresponding <math>\pi</math>-D-BOVB orbitals computed in vacuum (2.2)
 
## Perform <math>\pi</math>-D-BOVB/PCM calculations with minimal structures for reactant  (file name: rs_pcm_d-bovb_rs) and product  (file name: rs_pcm_d-bovb), also starting from the corresponding <math>\pi</math>-D-BOVB orbitals computed in vacuum (2.2)
# Perform BOVB/PCM calculations for transition state  (file name: rs_pcm_d-bovb*) with the same procedure as step 4.
+
# Perform BOVB/PCM calculations for transition state  (file names: rs_pcm_d-bovb*) with the same procedure as step 4.
  
 
==== 2. Analysis: Wavefunctions and Energies====
 
==== 2. Analysis: Wavefunctions and Energies====

Version du 13 juillet 2012 à 07:37

<< Return to the program


Valence Bond State correlation diagrams

Exercise 1 : Computation of state correlation Diagrams for a 3 centers / 4 electrons system

In this exercise the <math>\textrm{S}_{\textrm{N}}2</math> reaction Cl<math>{}^{-}</math> + CH<math>{}_3</math>Cl -> ClCH<math>{}_3</math> + Cl<math>{}^{-}</math> will be studied in both vacuum and solution. Valence Bond State Correlation Diagrams (VBSCD) will be constructed at <math>\pi</math>-D-BOVB level. There are two parts in this exercise: basic part and optional part. The basic part is performed with MCP-DZP basis set in which the inner orbitals in Cl and C are described with MCP pseudo potential. The optional part is performed with 6-31+G* basis set, using the general specification for the xmvb input (expert users). Only reactant and transition state will be computed in this exercise, which is sufficient to build the VBSCD diagrams.

>> general guidelines for BOVB calculations