Différences entre les versions de « VBTutorial4 »

De Workshops
Aller à la navigation Aller à la recherche
 
(30 versions intermédiaires par 3 utilisateurs non affichées)
Ligne 1 : Ligne 1 :
[[VB_workshop_tutorials_program|<< Return to the program]]
+
[[VB_tutorial|<<< VB tutorials main page]]
 
 
 
 
<font color=red> '''How to modify this page''' : </font>
 
* first : '''<font color=blue>log in</font>''' (top right of this page) ;
 
* click on '''[<font color=blue>edit</font>]''' (far right) to edit a section of the page ;
 
* write your text directly in the wiki page, and click on the "Save page" button (bottom left) to save your modifications
 
Pictures : [[Insert a picture| how to insert a picture]] in your text
 
 
 
See also [http://en.wikipedia.org/wiki/Wikipedia:Cheatsheet this page] for an introduction to the basics of the wiki syntax
 
  
  
Ligne 19 : Ligne 10 :
 
|-
 
|-
 
|
 
|
[[BLW | BLW ]] is provided by [http://homepages.wmich.edu/~ymo/ Yirong Mo]  (Western Michigan University - USA). It allows to optimize local wave function.
+
[[BLW | BLW ]] is provided by [http://homepages.wmich.edu/~ymo/ Yirong Mo]  (Western Michigan University - USA). It allows to optimize local wave functions. DFT approaches allow to include a part of correlation into the structure.
Gradients are available for geometry optimization. DFT approaches allow to include a part of correlation into the structure.
+
Gradients are available for geometry optimization. Structures can interact with $BLWCI group.  
 
 
Structures can interact with $BLWCI group.  
 
  
 
During the workshop, a BLW computation of file.inp is obtained with the command "blwrun  file "
 
During the workshop, a BLW computation of file.inp is obtained with the command "blwrun  file "
Ligne 70 : Ligne 59 :
 
|}
 
|}
  
The cc-pVTZ basis set will be used in the following, unless a different choice is specified.  
+
The 6-31G(d) basis set will be used in the following.  
  
 
1/ Vertical Resonance Energy - at the  geometry of benzene.
 
1/ Vertical Resonance Energy - at the  geometry of benzene.
With the BLW program, and using the provided optimized geometry of benzene molecule, define one 1,3,5-cyclohexadiene Lewis structure, and optimize it's orbitals. 4 blocks need to be defined 3 blocks for 3 pi bond, one for all the sigma electrons.
 
: by compairison to benzene energy, calculate the Vertical Resonance Energy (VRE), using the cc-pvTZ basis set.
 
: recompute the VRE using the aug-cc-pVTZ basis set, and then the aug-cc-pVQZ basis set. Comment on the differences : which basis set(s) is suitable for VB computations ?
 
  
 +
With the BLW program, and using the provided optimized geometry of benzene molecule, define one 1,3,5-cyclohexadiene Lewis structure, and optimize it's orbitals. 4 blocks need to be defined : 3 blocks for 3 pi bond, and 1 for all the sigma electrons.
 +
Using benzene energy, calculate the Vertical Resonance Energy (VRE).
 +
 +
 +
2/ Adiabatic Resonance Energy (ARE)- relax the Lewis structure geometry
  
2/ Adiabatic Resonance Energy - relax the Lewis structure geometry
 
 
With the BLW program, relax the Lewis' structure geometry.
 
With the BLW program, relax the Lewis' structure geometry.
 
: Compare the C-C bond distances to benzene's. Ensure that it is consistent with the Lewis structure.
 
: Compare the C-C bond distances to benzene's. Ensure that it is consistent with the Lewis structure.
Ligne 86 : Ligne 76 :
  
 
3/ With HuLiS, evaluate the space spanned by Lewis structures compared to that of delocalized wave functions.
 
3/ With HuLiS, evaluate the space spanned by Lewis structures compared to that of delocalized wave functions.
 +
 
: Draw the benzene with the Huckel tools (blue, left) and create two Kekules structures with the Lewis tools. Double bonds are obtained by clicking a single bond - A second click returns to the Single bond.
 
: Draw the benzene with the Huckel tools (blue, left) and create two Kekules structures with the Lewis tools. Double bonds are obtained by clicking a single bond - A second click returns to the Single bond.
 
::Note the low value of the trust factor <math>{\tau}</math>.
 
::Note the low value of the trust factor <math>{\tau}</math>.
Ligne 94 : Ligne 85 :
 
::Note the value of <math>{\tau}</math>, and the weight of all Lewis structures needed ([Results]).
 
::Note the value of <math>{\tau}</math>, and the weight of all Lewis structures needed ([Results]).
  
[[VBFile 4-1 | all input files are there]]
+
[[VBFile 4-1 | FILES FOR BENZENE]]
  
 
== Exercice 2 (allyl) ==
 
== Exercice 2 (allyl) ==
Ligne 100 : Ligne 91 :
  
 
*1/ With the BLW code calculate the relative energies of the three Lewis structures of the allyl cation at the HF level. By comparison with the energy of the allyl cation, determine the VRE and the ARE. Compare the C-C bond distances.
 
*1/ With the BLW code calculate the relative energies of the three Lewis structures of the allyl cation at the HF level. By comparison with the energy of the allyl cation, determine the VRE and the ARE. Compare the C-C bond distances.
 +
 +
{| class="collapsible collapsed wikitable"
 +
|-
 +
!'''Hints'''
 +
|-
 +
|
 +
* Starting from the delocalized geometry, the first iteration of the optimization of the localized structure will give the VRE.
 +
|}
  
 
*2/ Repeat the first question at the B3LYP level.
 
*2/ Repeat the first question at the B3LYP level.
  
 
*3/ Repeat questions 1 and 2 for the allyl radical.
 
*3/ Repeat questions 1 and 2 for the allyl radical.
 
*4/ With XMVB, for the allyl cation put in resonance  structures '''I''' and '''II''', then add  structure '''III'''. What is the gain in energy due to the inclusion of this third structure?
 
  
 
[[VBFile 4-2 | FILES FOR THE ALLYLS]]
 
[[VBFile 4-2 | FILES FOR THE ALLYLS]]
Ligne 195 : Ligne 192 :
 
  don't forget to name the cube file.   
 
  don't forget to name the cube file.   
 
  '''test.cube_BLW'''  
 
  '''test.cube_BLW'''  
  see also [[VBFile_4-4#gaussiancube.com | gaussiancube file]]
+
  see also [[VBFile_4-3#gaussiancube.com | gaussiancube file]]
  
 
|}
 
|}
  
[[VBFile 4-4 | all input files are there]]
+
[[VBFile 4-3 | FILES FOR THE NH3 ... BH3]]
  
 
|}
 
|}
Ligne 212 : Ligne 209 :
 
== Exercise 4 (Butadiene deconjugation without hyperconjugation) ==
 
== Exercise 4 (Butadiene deconjugation without hyperconjugation) ==
 
[[File:Rotated_butadiene.png|right|150px|alt=butadiene - Lewis alt text | planar butadiene ]]
 
[[File:Rotated_butadiene.png|right|150px|alt=butadiene - Lewis alt text | planar butadiene ]]
[[File:planar_butadiene.png|right|150px|alt=butadiene - Lewis alt text | planar butadiene ]]
+
[[File:planar_butadiene.png|right|200px|alt=butadiene - Lewis alt text | planar butadiene ]]
 
Examine the conjugation in planar butadiene and the hyperconjugation in perpendicular butadiene, and explain the rotational barrier.
 
Examine the conjugation in planar butadiene and the hyperconjugation in perpendicular butadiene, and explain the rotational barrier.
  
 
Note that often people rotate one participating group to disable the conjugation and use the barrier to measure the conjugation energy. What is the inconvenience of this approach?  
 
Note that often people rotate one participating group to disable the conjugation and use the barrier to measure the conjugation energy. What is the inconvenience of this approach?  
  
BLW shall be used
+
* to compute the deconjugated planar form, and compare to the conjugated form at the same geometry.
+
* Compute the conjugated planar form with a standard B3LYP/6-31G(d) calculation
* to inhibit at will the hyperconjugaison in the perpendicular form, hence to mesure its stabilizing contribution to the rotation barrier.
+
* Using BLW, localize the pi electrons on C1=C2 and on C3=C4 double bonds. (view the geometrie to verify that the pi system is along the X axis.
 +
* Compare the energies to calculate the conjugaison energy.
 +
 
 +
{| class="collapsible collapsed wikitable"
 +
|-
 +
!'''Planar geometry'''
 +
|-
 +
|
 +
<html><pre>
 +
C    6.0  0.0000000000  0.6097325637  1.7490045499
 +
C    6.0  0.0000000000  0.6038280097  0.4085967284
 +
C    6.0  0.0000000000  -0.6038307169  -0.4085950903
 +
C    6.0  0.0000000000  -0.6097309803  -1.7490029472
 +
H    1.0  0.0000000000  1.5343833559  2.3190652626
 +
H    1.0  0.0000000000  -0.3149186339  2.3230080652
 +
H    1.0  0.0000000000  1.5514513284  -0.1322302753
 +
H    1.0  0.0000000000  -1.5514569088  0.1322266423
 +
H    1.0  0.0000000000  -1.5343794820  -2.3190677945
 +
H    1.0  0.0000000000  0.3149214640  -2.3230051413
 +
</pre></html>
 +
|}
 +
* Use the perpendicular form given below to compute the "deconjugated" system. The comparairison with the planar standard calculation gives an estimate of the conjugaison, which is contaminated by some hyperconjugaison.
 +
* To inhibit hyperconjugaison in the perpendicular form, localize the electrons on the C1=C2 and on C3=C4 double bond. (note that the C3=C4 vinyl group has rotated along the XZ plane; hence its pi system is along the Y axis.
 +
 
 +
{| class="collapsible collapsed wikitable"
 +
|-
 +
!'''Twisted (perpendicular) geometry'''
 +
|-
 +
|
 +
 
 +
<html><pre>
 +
C    6.0  0.000000  -1.086858    2.236154
 +
C    6.0  0.000000    0.000000    1.489418
 +
  C    6.0  0.000000    0.000000    0.000000
 +
C    6.0  -1.086858    0.000000  -0.746736
 +
H    1.0  0.967527    0.000000  -0.478451
 +
H    1.0  0.000000    0.967527    1.967869
 +
H    1.0  -2.072275    0.000000  -0.314213
 +
H    1.0  -1.029400    0.000000  -1.820913
 +
H    1.0  0.000000  -2.072275    1.803631
 +
H    1.0  0.000000  -1.029400    3.310331
 +
$END
 +
 
 +
</pre></html>
 +
[[File:Rotated_butadiene.png|right|250px|alt=butadiene - Lewis alt text | planar butadiene The C3=C4 has rotated along the XZ plane; hence its pi system is along the Y axis.]]
  
[[VBFile 4-3 | FILES ARE HERE]]
+
|}
 +
[[VBFile 4-4 | FILES FOR THE BUTADIENE DECONJUGAISON ]]
  
 
== Exercise 5 : formamide and allyl radical with HuLiS ==
 
== Exercise 5 : formamide and allyl radical with HuLiS ==
Ligne 238 : Ligne 280 :
 
<math> \Psi_{HL-CI}=0.81\Psi_{I}+0.58\Psi_{II}</math>, hence the weights of the structures (I/II)=(66%/34%)  
 
<math> \Psi_{HL-CI}=0.81\Psi_{I}+0.58\Psi_{II}</math>, hence the weights of the structures (I/II)=(66%/34%)  
  
Note that in HL-CI <math><Psi_{I}|\Psi_{II}>=0</math>
+
Note that in HL-CI <math><\Psi_{I}|\Psi_{II}>=0</math>
 
  {| class="collapsible collapsed wikitable"
 
  {| class="collapsible collapsed wikitable"
 
|-
 
|-

Dernière version du 14 février 2013 à 08:27

<<< VB tutorials main page


BLW method & HuLiS program