Différences entre les versions de « VBTutorial3 »

De Workshops
Aller à la navigation Aller à la recherche
Ligne 48 : Ligne 48 :
 
# Compare the energies of reactant and product structures at reactant and transition state geometries, in both vacuum and solution. What's the difference of the energies at different points? Why?
 
# Compare the energies of reactant and product structures at reactant and transition state geometries, in both vacuum and solution. What's the difference of the energies at different points? Why?
 
# Compute the resonance energies at both reactant and transition state points, see the difference of the resonance energies.
 
# Compute the resonance energies at both reactant and transition state points, see the difference of the resonance energies.
 +
 +
{| class="collapsible collapsed wikitable"
 +
|-
 +
!'''Answer'''
 +
|-
 +
|
 +
=====VB Structures in the Computations======
 +
<center>[[File:ClCH3Cl_Structures.png|600px]]</center><br>
 +
<center>Total VB Structure Set</center>
 +
<br>
 +
<center>[[File:ClCH3Cl_Reactant_Structures.png|600px]]</center><br>
 +
<center>VB Structure Set of The Reactant</center>
 +
<br>
 +
<center>[[File:ClCH3Cl_Product_Structures.png|600px]]</center><br>
 +
<center>VB Structure Set of The Product</center>
 +
<br>
 +
 +
<center><big>'''Basic Part'''</big></center>
 +
 +
=====Weights of Structures=====
 +
<center>
 +
{| border="1"
 +
|+ Weights of structures at Reactant Geometry
 +
! scope="col" |
 +
! scope="col" | S1
 +
! scope="col" | S2
 +
! scope="col" | S3
 +
! scope="col" | S4
 +
! scope="col" | S5
 +
! scope="col" | S6
 +
|-
 +
! scope="row"      |VBSCF
 +
| 0.590 || 0.002 || 0.001 || 0.338 || 0.070 || -0.000
 +
|-
 +
! scope="row"    | BOVB
 +
|0.578 || 0.022 || 0.006 || 0.336 || 0.059 || 0.000
 +
|-
 +
! scope="row"      | VBSCF/PCM
 +
|0.604 || 0.001 || 0.001 || 0.316 || 0.078 || 0.000
 +
|-
 +
! scope="row"      | BOVB/PCM
 +
|0.596 || 0.015 || 0.003 || 0.318 || 0.068 || 0.000
 +
|}
 +
</center>
 +
<br>
 +
<center>
 +
{| border="1"
 +
|+ Weights of structures at Transition State Geometry
 +
! scope="col" |
 +
! scope="col" | S1
 +
! scope="col" | S2
 +
! scope="col" | S3
 +
! scope="col" | S4
 +
! scope="col" | S5
 +
! scope="col" | S6
 +
|-
 +
! scope="row"      |VBSCF
 +
| 0.239 || 0.240 || 0.027 || 0.496 || -0.001 || -0.001
 +
|-
 +
! scope="row"    | BOVB
 +
| 0.228 || 0.228 || 0.041 || 0.494 || 0.004 || 0.004
 +
|-
 +
! scope="row"      | VBSCF/PCM
 +
|0.221 || 0.221 || 0.022 || 0.538 || -0.001 || -0.001
 +
|-
 +
! scope="row"      | BOVB/PCM
 +
|0.215 || 0.215 || 0.035 || 0.528 || 0.003 || 0.003
 +
|}
 +
</center>
 +
 +
=====Barrier of the Reaction=====
 +
<center>
 +
{| border="1"
 +
|+ Energies (a.u.) and Barriers (kcal/mol) of <math>\textrm{S}_{\textrm{N}}2</math> Reaction
 +
! scope="col" |
 +
! scope="col" | VBSCF
 +
! scope="col" | BOVB
 +
! scope="col" | VBSCF/PCM
 +
! scope="col" | BOVB/PCM
 +
|-
 +
! scope="row"      |Reactant
 +
| -37.03384 || -37.05387 || -37.13644 || -37.15552
 +
|-
 +
! scope="row"    | Trasition State
 +
| -36.98034  || -37.02691  || -37.06980 || -37.11506
 +
|-
 +
! scope="row"      | Barrier
 +
| 33.6 || 16.9 || 41.8 || 25.4
 +
|}
 +
</center>
 +
 +
=====Resonance Energ of Transition State=====
 +
<center>
 +
{| border="1"
 +
|+ Energies (a.u.) and Resonance Energies (kcal/mol) of Transition State
 +
! scope="col" |
 +
! scope="col" | VBSCF
 +
! scope="col" | BOVB
 +
! scope="col" | VBSCF/PCM
 +
! scope="col" | BOVB/PCM
 +
|-
 +
! scope="row"    | All Structures
 +
| -36.98034 ||-37.02691 || -37.06980 || -37.11506
 +
|-
 +
! scope="row" | Reactant
 +
| -36.95812 || -36.97494 || -37.05258 || -37.06909
 +
|-
 +
! scope="row" | Product
 +
| -36.95812 ||-36.97494 ||-37.05258 || -37.06910
 +
|-
 +
! scope="row"      | Resonance Energy
 +
| 13.9 || 32.6 || 10.8 || 28.8
 +
|}
 +
</center>
 +
 +
=====Resonance Energ of Transition State=====
 +
<center>
 +
{| border="1"
 +
|+ Energies(a.u.) and Resonance Energies (kcal/mol) of Reactant
 +
! scope="col" |
 +
! scope="col" | VBSCF
 +
! scope="col" | BOVB
 +
! scope="col" | VBSCF/PCM
 +
! scope="col" | BOVB/PCM
 +
|-
 +
! scope="row"    | All Structures
 +
| -37.03384 || -37.05387 || -37.13644 || -37.15552
 +
|-
 +
! scope="row" | Reactant
 +
| -37.03354 || -37.05085 || -37.13626 ||-37.15356
 +
|-
 +
! scope="row" | Product
 +
| -36.59694 ||-36.59694 || -36.88408 || -36.88750
 +
|-
 +
! scope="row"      | Resonance Energy
 +
| 0.2 || 1.9 || 0.1 || 1.2
 +
|}
 +
</center>
 +
|}
  
 
|}
 
|}

Version du 12 juillet 2012 à 11:40

<< Return to the program


Valence Bond State correlation diagrams

Exercise 1 : Computation of state correlation Diagrams for a 3 centers / 4 electrons system

In this exercise the <math>\textrm{S}_{\textrm{N}}2</math> reaction Cl<math>{}^{-}</math> + CH3Cl -> ClCH3 + Cl<math>{}^{-}</math> will be studied in both vacuum and solution. Valence Bond State Correlation Diagrams (VBSCD) will be constructed at <math>\pi</math>-D-BOVB level. There are two parts in this exercise: basic part and optional part. The basic part is performed with MCP-DZP basis set in which the inner orbitals in Cl and C are described with MCP pseudo potential. The optional part is performed with 6-31+G* basis set, using the general specification for the xmvb input (expert users). Only reactant and transition state will be computed in this exercise, which is sufficient to build the VBSCD diagrams.

>> Answer


>> general guidelines for BOVB calculations