Différences entre les versions de « VBTutorial1 »
Ligne 30 : | Ligne 30 : | ||
= Exercices = | = Exercices = | ||
− | == Exercise 1 (paper exercise) : The lone pairs of | + | == Exercise 1 (paper exercise) : The lone pairs of H<math>{}_2</math>O == |
− | This exercise aims at comparing two descriptions of the lone pairs of | + | This exercise aims at comparing two descriptions of the lone pairs of H<math>{}_2</math>O : (i) the MO description in terms of non-equivalent canonical MOs and (ii) the « rabbit-ear » VB description in terms of two equivalent hybrid orbitals. |
<center> [[File:h2o_ex1.png|450px]] </center> | <center> [[File:h2o_ex1.png|450px]] </center> | ||
− | <center><math>\Psi_{MO}</math> {{pad|290px}} <math>\Psi_{VB}</math></center> | + | <center><math>\Psi_{\textrm{MO}}</math> {{pad|290px}} <math>\Psi_{\textrm{VB}}</math></center> |
− | # Focusing on the lone pairs only, write the four-electron single-determinants | + | # Focusing on the lone pairs only, write the four-electron single-determinants <math>\Psi_{\textrm{MO}} </math> and <math>\Psi_{\textrm{VB}} </math> . |
− | # Expand | + | # Expand <math>\Psi_{\textrm{VB}} </math> into elementary determinants containing only <math>n</math> and <math>p</math> orbitals, eliminate determinants having two identical spinorbitals, and show the equivalence between <math>\Psi_{\textrm{VB}}</math> and <math>\Psi_{\textrm{MO}}</math>. |
− | # We now remove one electron from | + | # We now remove one electron from H<math>{}_2</math>O. Write the two possible VB structures <math>\Phi_1</math> and <math>\Phi_2</math> in the VB framework. |
− | # The two ionized states are the symmetry-adapted combinations | + | # The two ionized states are the symmetry-adapted combinations <math>\frac{1}{2}\left(\Phi_1-\Phi_2\right)</math> and <math>\frac{1}{2}\left(\Phi_1+\Phi_2\right)</math>. From the sign of the hamiltonian matrix element <math>\langle \Phi_1 \vert \hat{H} \vert \Phi_2 \rangle</math>, give the energy ordering of the two ionized states. |
− | # By expanding the two ionized states into elementary determinants (dropping the normalization constants), show that they are equivalent, respectively, to the MO configurations | + | # By expanding the two ionized states into elementary determinants (dropping the normalization constants), show that they are equivalent, respectively, to the MO configurations <math>\vert nn\bar{p}\vert</math> and <math>\vert pp\bar{n}\vert</math>. |
'''Appendix''' | '''Appendix''' | ||
Hamiltonian matrix element between determinants differing by one spin-orbital : | Hamiltonian matrix element between determinants differing by one spin-orbital : | ||
+ | <center><math>\langle \cdots i \cdots \vert \hat{H} \vert \cdots j \cdots\rangle = \beta_{ij}</math></center> | ||
[[Answer Exercise1 of tutorial 1|>> Answer]] | [[Answer Exercise1 of tutorial 1|>> Answer]] |
Version du 27 mai 2012 à 15:08
How to modify this page :
- first : log in (top right of this page) ;
- click on [edit] (far right) to edit a section of the page ;
- write your text directly in the wiki page, and click on the "Save page" button (bottom left) to save your modifications
Pictures : how to insert a picture in your text
See also this page for an introduction to the basics of the wiki syntax
To the Tutors
Sason remarks and prospective 2 hours talk +
Philippe's remark on the initially proposed tutorial. are included in bold.
Qualitative
- Exercices from The Book ... >PCH< (30')
Computational
- FH (2 structures), F2 : VBSCF, different correlation wave functions (BOVB, VBCI,...), computation of weights and "charge-shift" character, also compare to CASSCF wave functions in the same basis set (probably to provide in order to avoid to spend time there).
- R-X bond dissociation to R. .X and R(+) (-)X for stable ionic dissociation ... via solvent effects? (is that possible with xiamen ?)
Exercices
Exercise 1 (paper exercise) : The lone pairs of H<math>{}_2</math>O
This exercise aims at comparing two descriptions of the lone pairs of H<math>{}_2</math>O : (i) the MO description in terms of non-equivalent canonical MOs and (ii) the « rabbit-ear » VB description in terms of two equivalent hybrid orbitals.
- Focusing on the lone pairs only, write the four-electron single-determinants <math>\Psi_{\textrm{MO}} </math> and <math>\Psi_{\textrm{VB}} </math> .
- Expand <math>\Psi_{\textrm{VB}} </math> into elementary determinants containing only <math>n</math> and <math>p</math> orbitals, eliminate determinants having two identical spinorbitals, and show the equivalence between <math>\Psi_{\textrm{VB}}</math> and <math>\Psi_{\textrm{MO}}</math>.
- We now remove one electron from H<math>{}_2</math>O. Write the two possible VB structures <math>\Phi_1</math> and <math>\Phi_2</math> in the VB framework.
- The two ionized states are the symmetry-adapted combinations <math>\frac{1}{2}\left(\Phi_1-\Phi_2\right)</math> and <math>\frac{1}{2}\left(\Phi_1+\Phi_2\right)</math>. From the sign of the hamiltonian matrix element <math>\langle \Phi_1 \vert \hat{H} \vert \Phi_2 \rangle</math>, give the energy ordering of the two ionized states.
- By expanding the two ionized states into elementary determinants (dropping the normalization constants), show that they are equivalent, respectively, to the MO configurations <math>\vert nn\bar{p}\vert</math> and <math>\vert pp\bar{n}\vert</math>.
Appendix
Hamiltonian matrix element between determinants differing by one spin-orbital :
Exercice 2 : Simple diatomics molecules
Subject
First contact with XMVB on simple diatomics. Examination of the effect of correlation on weights, and bond energies. Calculation of a pure covalent state and (charge-shift) resonance energy.
To do
- Compute of H2 at the VBSCF level.
- Compute HF at the VBSCF, VBCI, and D-BOVB levels. Compute bond energy. Compute a single covalent structure, and deduce the charge-shift resonance energy.
- Same question for F2
Access to files :
Exercice 3 : Dissociation of C(Me)3-Cl
Subject
First calculation beyond diatomics (fragment C(Me)3 and Cl). VB(PCM) method.
To do
- Compute of C(Me)3-Cl at equilibrium distance at the VBSCF and D-BOVB levels.
- Compute C(Me)3-Cl at large inter fragment distance (5Å ?), at the D-BOVB level.
- Redo previous questions using the VB(PCM) option.