Différences entre les versions de « VBTutorial1 »
Aller à la navigation
Aller à la recherche
Basics of VB theory and XMVB program
***** INPUT FILES TO BE FINALIZED *****
***** INPUT FILES TO BE FINALIZED *****
***** INPUT FILES TO BE FINALIZED *****
***** INPUT FILES TO BE WRITTEN *****
Ligne 15 : | Ligne 15 : | ||
− | |||
− | |||
− | |||
− | <big> | + | {| class="collapsible collapsed wikitable" |
+ | |- | ||
+ | !<big><big><big>'''Paper exercise'''</big></big></big> | ||
+ | |- | ||
+ | | | ||
+ | |||
+ | |||
+ | <big><big><big><center>'''The lone pairs of H<sub>2</sub>O'''</center></big></big></big> | ||
− | |||
<big><big><center><font color=darkgreen> '''***** EXERCISE COMPLETED *****''' </font></center></big></big> | <big><big><center><font color=darkgreen> '''***** EXERCISE COMPLETED *****''' </font></center></big></big> | ||
+ | |||
(for further reading, see S. Shaik and P.C. Hiberty, '''"The Chemist's Guide to VB theory"''', Wiley, Hoboken, New Jersey, 2008, pp. 107-109) | (for further reading, see S. Shaik and P.C. Hiberty, '''"The Chemist's Guide to VB theory"''', Wiley, Hoboken, New Jersey, 2008, pp. 107-109) | ||
Ligne 41 : | Ligne 45 : | ||
# By expanding the two ionized states into elementary determinants (dropping the normalization constants), show that they are equivalent, respectively, to the MO configurations <math>\vert nn\bar{p}\vert</math> and <math>\vert pp\bar{n}\vert</math>. | # By expanding the two ionized states into elementary determinants (dropping the normalization constants), show that they are equivalent, respectively, to the MO configurations <math>\vert nn\bar{p}\vert</math> and <math>\vert pp\bar{n}\vert</math>. | ||
− | '''Appendix''' | + | {| class="collapsible collapsed wikitable" |
+ | |- | ||
+ | !<big>'''Appendix'''</big> | ||
+ | |- | ||
+ | | | ||
Hamiltonian matrix element between determinants differing by one spin-orbital : | Hamiltonian matrix element between determinants differing by one spin-orbital : | ||
Ligne 47 : | Ligne 55 : | ||
Don’t forget to put the orbitals of the two determinants in maximal correspondence before applying the rule. | Don’t forget to put the orbitals of the two determinants in maximal correspondence before applying the rule. | ||
+ | |} | ||
+ | |||
+ | {| class="collapsible collapsed wikitable" | ||
+ | |- | ||
+ | !<big>'''Answer'''</big> | ||
+ | |- | ||
+ | | | ||
+ | |||
+ | <big> | ||
+ | |||
+ | 1. | ||
+ | <br> | ||
+ | |||
+ | <math> | ||
+ | \Psi_{\textrm{MO}}=\vert n\bar{n}p\bar{p}\vert | ||
+ | </math> | ||
+ | {{pad|5px}} ; {{pad|5px}} | ||
+ | <math> | ||
+ | \Psi_{\textrm{VB}}=\vert \left( n-\lambda p\right)\left( \bar{n}-\lambda\bar{p}\right)\left( n+\lambda p\right)\left(\bar{n}+\lambda\bar{p}\right)\vert | ||
+ | </math> | ||
+ | |||
+ | <br> | ||
+ | |||
+ | 2. | ||
+ | <br> | ||
+ | |||
+ | <math> | ||
+ | \begin{matrix} | ||
+ | \Psi_{\textrm{VB}} | ||
+ | &=&\vert \left( n\bar{n} -\lambda p\bar{n} -\lambda n\bar{p} +\lambda^2 p\bar{p} \right) \left( n\bar{n} +\lambda p\bar{n} +\lambda n\bar{p} +\lambda^2 p\bar{p} \right) \vert | ||
+ | \end{matrix} | ||
+ | </math> | ||
+ | |||
+ | <math> | ||
+ | \begin{matrix} | ||
+ | \Psi_{\textrm{VB}} | ||
+ | &=&\vert n\bar{n}n\bar{n} \vert + \lambda\vert n\bar{n}p\bar{n} \vert + \lambda\vert n\bar{n}n\bar{p} \vert + \lambda^2 \vert n\bar{n}p\bar{p} \vert | ||
+ | - \lambda \vert p\bar{n}n\bar{n} \vert -\lambda^2 \vert p\bar{n}p\bar{n} \vert -\lambda^2 \vert p\bar{n}n\bar{p} \vert -\lambda^3 \vert p\bar{n}p\bar{p} \vert | ||
+ | \end{matrix} | ||
+ | </math> | ||
+ | |||
+ | <math> | ||
+ | \begin{matrix} | ||
+ | - \lambda \vert n\bar{p}n\bar{n} \vert -\lambda^2 \vert n\bar{p}p\bar{n} \vert -\lambda^2 \vert n\bar{p}n\bar{p} \vert -\lambda^3 \vert n\bar{p}p\bar{p} \vert | ||
+ | + \lambda^2 \vert p\bar{p}n\bar{n} \vert +\lambda^3 \vert p\bar{p}p\bar{n} \vert +\lambda^3 \vert p\bar{p}n\bar{p} \vert +\lambda^4 \vert p\bar{p}p\bar{p} \vert | ||
+ | \end{matrix} | ||
+ | </math> | ||
+ | |||
+ | After eliminating all determinants having two orbitals with the same spin, there remains : | ||
+ | |||
+ | <math> | ||
+ | \begin{matrix} | ||
+ | \Psi_{\textrm{VB}} | ||
+ | &=& \lambda^2 \vert n\bar{n}p\bar{p} \vert -\lambda^2 \vert p\bar{n}n\bar{p} \vert -\lambda^2 \vert n\bar{p}p\bar{n} \vert + \lambda^2 \vert p\bar{p}n\bar{n} \vert | ||
+ | \end{matrix} | ||
+ | </math> | ||
+ | |||
+ | After permuting the columns and changing signs accordingly, there remains : <math> | ||
+ | \Psi_{\textrm{VB}}=4\lambda^2\vert n\bar{n}p\bar{p} \vert=\Psi_{\textrm{MO}} </math> (if one includes normalization factors). | ||
+ | |||
+ | <br> | ||
+ | |||
+ | 3. | ||
+ | <br> | ||
+ | <math>\Phi_1=\vert \left( n-\lambda p \right)\left( \bar{n}-\lambda\bar{p} \right)\left( n+\lambda p \right) \vert </math>, <math>\Phi_2=\vert \left( n+\lambda p \right)\left( \bar{n}+\lambda\bar{p} \right)\left( n-\lambda p \right) \vert </math> | ||
+ | |||
+ | Permuting the first and third orbitals in <math>\Phi_2</math> and changing the sign accordingly, we get <math>-\Phi_2</math> that has maximum orbital correspondence with <math>\Phi_1</math> : | ||
+ | |||
+ | <math>-\Phi_2</math> =<math>\vert \left( n-\lambda p \right) \left( \bar{n}+\lambda\bar{p} \right) \left( n+\lambda p \right) \vert </math>. | ||
+ | |||
+ | <br> | ||
+ | |||
+ | 4. | ||
+ | <br> | ||
+ | <math>\Phi_1</math> and <math>-\Phi_2</math> differ by only one orbital, <math>\left( \bar{n}-\lambda \bar{p} \right)</math> in <math>\Phi_1</math> which becomes <math>\left( \bar{n}+\lambda \bar{p} \right)</math> in <math>-\Phi_2</math>. Therefore the matrix element <math> \langle \Phi_1 \vert \hat{H} \vert -\Phi_2 \rangle </math> is a simple <math>\beta</math> integral, necessarily negative. Hence, the lowest ionized state is <math> \frac{1}{\sqrt{2}}\left(\Phi_1-\Phi_2\right)</math> while the higher ionized state is <math> \frac{1}{\sqrt{2}}\left(\Phi_1+\Phi_2\right)</math>. | ||
+ | |||
+ | <br> | ||
+ | |||
+ | 5. | ||
+ | <br> | ||
+ | <math>\Phi_1=\vert n\bar{n}n\vert -\lambda\vert p\bar{n}n\vert -\lambda\vert n\bar{p}n\vert +\lambda^2\vert p\bar{p}n\vert+\lambda\vert n\bar{n}p\vert-\lambda^2\vert p\bar{n}p\vert-\lambda^2\vert n\bar{p}p\vert+\lambda^3\vert \bar{p}p\vert</math> | ||
+ | |||
+ | <math>\Phi_1=+2\lambda^2\vert p\bar{p}n \vert +2\lambda\vert n\bar{n}p \vert</math> | ||
+ | |||
+ | In the same way, one shows that <math>\Phi_2=-2\lambda^2\vert p\bar{p}n \vert +2\lambda\vert n\bar{n}p \vert</math>. It follows that : | ||
+ | |||
+ | <math>\left(\Phi_1-\Phi_2\right)\propto \vert n\bar{n}p \vert </math> (lowest ionized state in MO theory) | ||
− | + | <math>\left(\Phi_1+\Phi_2\right)\propto \vert p\bar{p}n \vert </math> (higher ionized state in MO theory). | |
+ | |||
+ | It is concluded that 1) VB theory yields two ionization potentials for H<math>{}_2</math>O, in agreement with experiment, and 2) that these ionization potentials are exactly the same as the ones found in elementary MO theory. | ||
+ | |||
+ | |||
+ | </big> | ||
+ | |||
+ | |} | ||
+ | |||
+ | |} | ||
== Exercise 2 : Starting up with the H<math>{}_2</math> molecule == | == Exercise 2 : Starting up with the H<math>{}_2</math> molecule == | ||
Ligne 113 : | Ligne 217 : | ||
## Compute a D-BOVB wave function, by freezing the active orbitals, and delocalizing all inactive orbitals onto the whole molecule. | ## Compute a D-BOVB wave function, by freezing the active orbitals, and delocalizing all inactive orbitals onto the whole molecule. | ||
# Starting from guess orbitals obtained at equilibrium geometry, redo the D-BOVB calculation for the large inter fragment distance. How does the weights of the different structures evolve when the molecule is stretched ? | # Starting from guess orbitals obtained at equilibrium geometry, redo the D-BOVB calculation for the large inter fragment distance. How does the weights of the different structures evolve when the molecule is stretched ? | ||
− | # Redo the D-BOVB calculations at equilibrium geometry and large distance using VBPCM for water. How does the weights change with solvation effects ? | + | # Redo the D-BOVB calculations at equilibrium geometry and large distance using VBPCM for water. How does the weights change with solvation effects ? |
− | |||
− |
Version du 28 juin 2012 à 22:44
How to modify this page :
- first : log in (top right of this page) ;
- click on [edit] (far right) to edit a section of the page ;
- write your text directly in the wiki page, and click on the "Save page" button (bottom left) to save your modifications
Pictures : how to insert a picture in your text
See also this page for an introduction to the basics of the wiki syntax
Exercise 2 : Starting up with the H<math>{}_2</math> molecule
Two Gamess and XMVB input files for the H<math>{}_2</math> molecule are provided in the Exercise folder on the tutorial machines :
- the file h2-atom.xmi input uses the fragment specification in terms of atoms (frgtyp=atom) ;
- the file h2-sao.xmi input uses the fragment specification in terms of symmetry-adapted orbitals (frgtyp=sao).
There are VBSCF calculations with the 6-31G(d,p) basis set. Just inspect these inputs, run the gamess-xmvb program (using : vbrun h2-atom and : vbrun h2-sao, and analyze the outputs.
Then these input files could serve you as templates for the next exercises.
Before moving to the next exercises, please read the following :
>>> general guidelines for BOVB calculations
Exercise 3 : HF molecule : weights and bond energy
- Compute a VBSCF three structure wave function for the HF molecule, using the frgtyp=sao specification and automatic guess (guess=auto). Which structure(s) should be kept in further BOVB calculations ?
- Using VBSCF orbitals as guess orbitals :
- Compute a L-BOVB wave function on a selected subset of structures ;
- Compute a VBCISD wave function for the multi-structure wave function
- Compare structure weights at the VBSCF, L-BOVB and VBCI levels
- Compute bond energies at the L-BOVB and VBCISD levels.
Exercise 4 : F<math>{}_2</math> molecule and charge-shift resonance energy
- Compute a VBSCF wave function for the F<math>{}_2</math> molecule, using the cc-pvtz basis set, and with inactive orbitals localized on only one of the fluorine atoms ;
- first the frgtyp=sao specification and automatic guess (guess=auto) ;
- second the frgtyp=atom specification and providing HF MOs as guess orbital through an extra $Gus section in the xmvb input
- BOVB level :
- Compute a L-BOVB wave function using VBSCF orbitals as guess orbitals ;
- Starting from the previous solution, compute a D-BOVB solution, by allowing only the inactive to delocalize onto the two atoms, while the active orbitals are kept frozen. Compare total energy with the previous level.
- We want to calculate the charge-shift resonance energy (RE_CS) for the F<math>{}_2</math> molecule. For that, we have to compute a VB wave-function corresponding to a single covalent structure, and take the energy difference with the full (covalent+ionic) wave-function.
- Compute a purely covalent wave function for F<math>{}_2</math> at the VBSCF level. What would be the L-BOVB solution ?
- Compute a purely covalent wave function for F<math>{}_2</math> at the D-BOVB level.
- Deduce the RE_CS at the VBSCF, L-BOVB and D-BOVB. Compare its value computed at the D-BOVB level with the bond energy (Experimental : ~40 kcal/mol).
Exercice 5 : Solvent effect on C(Me)<math>{}_3</math>-Cl weights
- C(Me)<math>{}_3</math>-Cl at equilibrium geometry :
- Compute a VBSCF wave function using frgtyp=atom and a $Gus section to specify guess orbitals. The active electron pair will be the C-Cl bond, and all inactive orbitals should be localized either on Cl or on the C(Me3) fragment. Which structures should be kept in further BOVB calculations ?
- Compute a L-BOVB wave function.
- Compute a D-BOVB wave function, by freezing the active orbitals, and delocalizing all inactive orbitals onto the whole molecule.
- Starting from guess orbitals obtained at equilibrium geometry, redo the D-BOVB calculation for the large inter fragment distance. How does the weights of the different structures evolve when the molecule is stretched ?
- Redo the D-BOVB calculations at equilibrium geometry and large distance using VBPCM for water. How does the weights change with solvation effects ?