Différences entre les versions de « VBTutorial1 »

De Workshops
Aller à la navigation Aller à la recherche
Ligne 15 : Ligne 15 :
  
  
= Remarks=
 
[[Tutorial 1 remarks for tutors |>> Initial remarks for tutors]]
 
  
= Exercises =
 
  
<big>
+
{| class="collapsible collapsed wikitable"
 +
|-
 +
!<big><big><big>'''Paper exercise'''</big></big></big>
 +
|-
 +
|
 +
 
 +
 
 +
<big><big><big><center>'''The lone pairs of H<sub>2</sub>O'''</center></big></big></big>
  
== Exercise 1 (paper exercise) : The lone pairs of H<sub>2</sub>O ==
 
  
 
<big><big><center><font color=darkgreen> '''***** EXERCISE COMPLETED *****''' </font></center></big></big>
 
<big><big><center><font color=darkgreen> '''***** EXERCISE COMPLETED *****''' </font></center></big></big>
 +
  
 
(for further reading, see S. Shaik and P.C. Hiberty, '''"The Chemist's Guide to VB theory"''', Wiley, Hoboken, New Jersey, 2008, pp. 107-109)
 
(for further reading, see S. Shaik and P.C. Hiberty, '''"The Chemist's Guide to VB theory"''', Wiley, Hoboken, New Jersey, 2008, pp. 107-109)
Ligne 41 : Ligne 45 :
 
# By expanding the two ionized states into elementary determinants (dropping the normalization constants), show that they are equivalent, respectively, to the MO configurations <math>\vert nn\bar{p}\vert</math>  and <math>\vert pp\bar{n}\vert</math>.
 
# By expanding the two ionized states into elementary determinants (dropping the normalization constants), show that they are equivalent, respectively, to the MO configurations <math>\vert nn\bar{p}\vert</math>  and <math>\vert pp\bar{n}\vert</math>.
  
'''Appendix'''
+
{| class="collapsible collapsed wikitable"
 +
|-
 +
!<big>'''Appendix'''</big>
 +
|-
 +
|
  
 
Hamiltonian matrix element between determinants differing by one spin-orbital :
 
Hamiltonian matrix element between determinants differing by one spin-orbital :
Ligne 47 : Ligne 55 :
  
 
Don’t forget to put the orbitals of the two determinants in maximal correspondence before applying the rule.
 
Don’t forget to put the orbitals of the two determinants in maximal correspondence before applying the rule.
 +
|}
 +
 +
{| class="collapsible collapsed wikitable"
 +
|-
 +
!<big>'''Answer'''</big>
 +
|-
 +
|
 +
 +
<big>
 +
 +
1. 
 +
<br>
 +
 +
<math>
 +
\Psi_{\textrm{MO}}=\vert n\bar{n}p\bar{p}\vert
 +
</math>
 +
{{pad|5px}} ; {{pad|5px}} 
 +
<math>
 +
\Psi_{\textrm{VB}}=\vert \left( n-\lambda p\right)\left( \bar{n}-\lambda\bar{p}\right)\left( n+\lambda p\right)\left(\bar{n}+\lambda\bar{p}\right)\vert
 +
</math>
 +
 +
<br>
 +
 +
2.
 +
<br>
 +
 +
<math>
 +
\begin{matrix}
 +
\Psi_{\textrm{VB}}
 +
&=&\vert \left( n\bar{n} -\lambda p\bar{n} -\lambda n\bar{p} +\lambda^2 p\bar{p} \right) \left( n\bar{n} +\lambda p\bar{n} +\lambda n\bar{p} +\lambda^2 p\bar{p} \right) \vert
 +
\end{matrix}
 +
</math>
 +
 +
<math>
 +
\begin{matrix}
 +
\Psi_{\textrm{VB}}
 +
&=&\vert n\bar{n}n\bar{n} \vert + \lambda\vert n\bar{n}p\bar{n} \vert + \lambda\vert n\bar{n}n\bar{p} \vert + \lambda^2 \vert n\bar{n}p\bar{p} \vert
 +
- \lambda \vert p\bar{n}n\bar{n} \vert  -\lambda^2 \vert p\bar{n}p\bar{n} \vert -\lambda^2 \vert p\bar{n}n\bar{p} \vert -\lambda^3 \vert p\bar{n}p\bar{p} \vert
 +
\end{matrix}
 +
</math>
 +
 +
<math>
 +
\begin{matrix}
 +
- \lambda \vert n\bar{p}n\bar{n} \vert  -\lambda^2 \vert n\bar{p}p\bar{n} \vert -\lambda^2 \vert n\bar{p}n\bar{p} \vert -\lambda^3 \vert n\bar{p}p\bar{p} \vert
 +
+ \lambda^2 \vert p\bar{p}n\bar{n} \vert  +\lambda^3 \vert p\bar{p}p\bar{n} \vert +\lambda^3 \vert p\bar{p}n\bar{p} \vert +\lambda^4 \vert p\bar{p}p\bar{p} \vert
 +
\end{matrix}
 +
</math>
 +
 +
After eliminating all determinants having two orbitals with the same spin, there remains :
 +
 +
<math>
 +
\begin{matrix}
 +
\Psi_{\textrm{VB}}
 +
&=& \lambda^2 \vert n\bar{n}p\bar{p} \vert -\lambda^2 \vert p\bar{n}n\bar{p} \vert  -\lambda^2 \vert n\bar{p}p\bar{n} \vert + \lambda^2 \vert p\bar{p}n\bar{n} \vert
 +
\end{matrix}
 +
</math>
 +
 +
After permuting the columns and changing signs accordingly, there remains : <math>
 +
\Psi_{\textrm{VB}}=4\lambda^2\vert n\bar{n}p\bar{p} \vert=\Psi_{\textrm{MO}} </math> (if one includes normalization factors).
 +
 +
<br>
 +
 +
3.
 +
<br>
 +
<math>\Phi_1=\vert \left( n-\lambda p \right)\left( \bar{n}-\lambda\bar{p} \right)\left( n+\lambda p \right) \vert </math>, <math>\Phi_2=\vert \left( n+\lambda p \right)\left( \bar{n}+\lambda\bar{p} \right)\left( n-\lambda p \right) \vert </math>
 +
 +
Permuting the first and third orbitals in <math>\Phi_2</math> and changing the sign accordingly, we get <math>-\Phi_2</math> that has maximum orbital correspondence with <math>\Phi_1</math> :
 +
 +
<math>-\Phi_2</math> =<math>\vert \left( n-\lambda p \right) \left( \bar{n}+\lambda\bar{p} \right) \left( n+\lambda p \right) \vert </math>.
 +
 +
<br>
 +
 +
4.
 +
<br>
 +
<math>\Phi_1</math> and <math>-\Phi_2</math> differ by only one orbital, <math>\left( \bar{n}-\lambda \bar{p} \right)</math> in <math>\Phi_1</math> which becomes <math>\left( \bar{n}+\lambda \bar{p} \right)</math> in <math>-\Phi_2</math>. Therefore the matrix element <math> \langle \Phi_1 \vert \hat{H} \vert -\Phi_2 \rangle </math> is a simple <math>\beta</math> integral, necessarily negative. Hence, the lowest ionized state is <math> \frac{1}{\sqrt{2}}\left(\Phi_1-\Phi_2\right)</math> while the higher ionized state is <math> \frac{1}{\sqrt{2}}\left(\Phi_1+\Phi_2\right)</math>.
 +
 +
<br>
 +
 +
5.
 +
<br>
 +
<math>\Phi_1=\vert n\bar{n}n\vert -\lambda\vert p\bar{n}n\vert -\lambda\vert n\bar{p}n\vert +\lambda^2\vert p\bar{p}n\vert+\lambda\vert n\bar{n}p\vert-\lambda^2\vert p\bar{n}p\vert-\lambda^2\vert n\bar{p}p\vert+\lambda^3\vert \bar{p}p\vert</math>
 +
 +
<math>\Phi_1=+2\lambda^2\vert p\bar{p}n \vert +2\lambda\vert n\bar{n}p \vert</math>
 +
 +
In the same way, one shows that <math>\Phi_2=-2\lambda^2\vert p\bar{p}n \vert +2\lambda\vert n\bar{n}p \vert</math>. It follows that :
 +
 +
<math>\left(\Phi_1-\Phi_2\right)\propto \vert n\bar{n}p \vert </math> (lowest ionized state in MO theory)
  
[[Answer Exercise1 of tutorial 1|>> Answer]]
+
<math>\left(\Phi_1+\Phi_2\right)\propto \vert p\bar{p}n \vert </math> (higher ionized state in MO theory).
 +
 
 +
It is concluded that 1) VB theory yields two ionization potentials for H<math>{}_2</math>O, in agreement with experiment, and 2) that these ionization potentials are exactly the same as the ones found in elementary MO theory.
 +
 
 +
 
 +
</big>
 +
 
 +
|}
 +
 
 +
|}
  
 
== Exercise 2 : Starting up with the H<math>{}_2</math> molecule ==
 
== Exercise 2 : Starting up with the H<math>{}_2</math> molecule ==
Ligne 113 : Ligne 217 :
 
## Compute a D-BOVB wave function, by freezing the active orbitals, and delocalizing all inactive orbitals onto the whole molecule.
 
## Compute a D-BOVB wave function, by freezing the active orbitals, and delocalizing all inactive orbitals onto the whole molecule.
 
# Starting from guess orbitals obtained at equilibrium geometry, redo the D-BOVB calculation for the large inter fragment distance. How does the weights of the different structures evolve when the molecule is stretched ?
 
# Starting from guess orbitals obtained at equilibrium geometry, redo the D-BOVB calculation for the large inter fragment distance. How does the weights of the different structures evolve when the molecule is stretched ?
# Redo the D-BOVB calculations at equilibrium geometry and large distance using VBPCM for water. How does the weights change with solvation effects ?  
+
# Redo the D-BOVB calculations at equilibrium geometry and large distance using VBPCM for water. How does the weights change with solvation effects ?
 
 
</big>
 

Version du 28 juin 2012 à 22:44

<< Return to the program


How to modify this page :

  • first : log in (top right of this page) ;
  • click on [edit] (far right) to edit a section of the page ;
  • write your text directly in the wiki page, and click on the "Save page" button (bottom left) to save your modifications

Pictures : how to insert a picture in your text

See also this page for an introduction to the basics of the wiki syntax


Basics of VB theory and XMVB program



Exercise 2 : Starting up with the H<math>{}_2</math> molecule

***** INPUT FILES TO BE FINALIZED *****

Two Gamess and XMVB input files for the H<math>{}_2</math> molecule are provided in the Exercise folder on the tutorial machines :

  • the file h2-atom.xmi input uses the fragment specification in terms of atoms (frgtyp=atom) ;
  • the file h2-sao.xmi input uses the fragment specification in terms of symmetry-adapted orbitals (frgtyp=sao).

There are VBSCF calculations with the 6-31G(d,p) basis set. Just inspect these inputs, run the gamess-xmvb program (using : vbrun h2-atom and : vbrun h2-sao, and analyze the outputs.

Then these input files could serve you as templates for the next exercises.



Before moving to the next exercises, please read the following :

>>> general guidelines for BOVB calculations



Exercise 3 : HF molecule : weights and bond energy

***** INPUT FILES TO BE FINALIZED *****
  1. Compute a VBSCF three structure wave function for the HF molecule, using the frgtyp=sao specification and automatic guess (guess=auto). Which structure(s) should be kept in further BOVB calculations ?
  2. Using VBSCF orbitals as guess orbitals :
    1. Compute a L-BOVB wave function on a selected subset of structures ;
    2. Compute a VBCISD wave function for the multi-structure wave function
    3. Compare structure weights at the VBSCF, L-BOVB and VBCI levels
  3. Compute bond energies at the L-BOVB and VBCISD levels.

>> Hints and remarks

Exercise 4 : F<math>{}_2</math> molecule and charge-shift resonance energy

***** INPUT FILES TO BE FINALIZED *****
  1. Compute a VBSCF wave function for the F<math>{}_2</math> molecule, using the cc-pvtz basis set, and with inactive orbitals localized on only one of the fluorine atoms ;
    1. first the frgtyp=sao specification and automatic guess (guess=auto) ;
    2. second the frgtyp=atom specification and providing HF MOs as guess orbital through an extra $Gus section in the xmvb input
  2. BOVB level :
    1. Compute a L-BOVB wave function using VBSCF orbitals as guess orbitals ;
    2. Starting from the previous solution, compute a D-BOVB solution, by allowing only the inactive to delocalize onto the two atoms, while the active orbitals are kept frozen. Compare total energy with the previous level.
  3. We want to calculate the charge-shift resonance energy (RE_CS) for the F<math>{}_2</math> molecule. For that, we have to compute a VB wave-function corresponding to a single covalent structure, and take the energy difference with the full (covalent+ionic) wave-function.
    1. Compute a purely covalent wave function for F<math>{}_2</math> at the VBSCF level. What would be the L-BOVB solution ?
    2. Compute a purely covalent wave function for F<math>{}_2</math> at the D-BOVB level.
    3. Deduce the RE_CS at the VBSCF, L-BOVB and D-BOVB. Compare its value computed at the D-BOVB level with the bond energy (Experimental : ~40 kcal/mol).

>> Hints and remarks

Exercice 5 : Solvent effect on C(Me)<math>{}_3</math>-Cl weights

***** INPUT FILES TO BE WRITTEN *****
  1. C(Me)<math>{}_3</math>-Cl at equilibrium geometry :
    1. Compute a VBSCF wave function using frgtyp=atom and a $Gus section to specify guess orbitals. The active electron pair will be the C-Cl bond, and all inactive orbitals should be localized either on Cl or on the C(Me3) fragment. Which structures should be kept in further BOVB calculations ?
    2. Compute a L-BOVB wave function.
    3. Compute a D-BOVB wave function, by freezing the active orbitals, and delocalizing all inactive orbitals onto the whole molecule.
  2. Starting from guess orbitals obtained at equilibrium geometry, redo the D-BOVB calculation for the large inter fragment distance. How does the weights of the different structures evolve when the molecule is stretched ?
  3. Redo the D-BOVB calculations at equilibrium geometry and large distance using VBPCM for water. How does the weights change with solvation effects ?