Différences entre les versions de « VBTutorial4 »

De Workshops
Aller à la navigation Aller à la recherche
Ligne 74 : Ligne 74 :
 
|}
 
|}
  
 
{| class="collapsible collapsed wikitable"
 
|-
 
!<big><big><big>'''Paper Exercices'''</big></big></big>
 
|-
 
|
 
 
Here are two HuLiS  exercices : find the weights in formamide with HL-CI and use HLP to get coefficients for the allyl radical.
 
 
====Formamide with HL-CI====
 
[[File:Formamide.png|400px|thumb|right]]
 
Formamide can be written as a resonance between two Lewis strutures. We shall find the weights of this scheme using HL-CI.
 
 
In HL-CI we define an effective CI hamiltonian that concerns the interaction between  the (localized) Lewis structures <math> \Psi_{I}</math> and <math> \Psi_{II}</math>: <math> \Psi_{HL-CI}=c_{I}\Psi_{I}+c_{II}\Psi_{II}</math>. This CI must give the Huckel energy of the delocalized wave function. <math> E_{HL-CI}=E_{Huckel}</math>
 
 
*1/ Write the expression of the CI secular determinant that has the energy ot the delocalized wave function, and show that the off-diagonal term is <math>H_{I-II}=0.71\beta</math>. (in HL-CI the off diagonal term is supposed <0).
 
 
*2/ Resolve the secular equations of the CI and find that
 
<math> \Psi_{HL-CI}=0.81\Psi_{I}+0.58\Psi_{II}</math>, hence the weights of the structures (I/II)=(66%/34%)
 
 
Note that in HL-CI <math><Psi_{I}|\Psi_{II}>=0</math>
 
{| class="collapsible collapsed wikitable"
 
|-
 
!'''help'''
 
|-
 
|
 
Formamide's Huckel energy <math>E_{Huckel}= 4\alpha + 6.548\beta</math>
 
 
The (localized) Lewis structures '''I''' and '''II''' have an energy of
 
** <math>E_{I}= 2*(\alpha + 1.370\beta)+2*(\alpha+1.651\beta)= 4\alpha + 6.041\beta</math> 
 
** <math>E_{II}= 2*(\alpha + 1.808\beta)+2*(\alpha+0.970\beta)= 4\alpha + 5.556\beta</math> 
 
 
These values are used as  <math>H_{I-I}</math> and <math>H_{II-II}</math> for the CI matrix.
 
|}
 
 
====Allyl Radical with HLP====
 
[[File:Allyl_radical.png|250px|thumb|right]]
 
Allyl radical can be written as a resonance between two Lewis strutures: <math> \Psi_{HLP}=c_{I}\Psi_{I}+c_{II}\Psi_{II}</math>.
 
We shall find the coefficients of this CI via HLP. The Huckel orbitals are considered as :
 
 
** <math> \phi_1=0.5 p_1 + 0.7 p_2 + 0.5 p_3 </math>
 
** <math> \phi_2=0.7 p_1 + 0.0 p_2 - 0.7 p_3 </math>
 
** <math> \phi_3=0.5 p_1 - 0.7 p_2 + 0.5 p_3 </math>
 
In the following the Huckel wave function is expressed as a Salter determinant: <math> \Psi_{Huckel}=|\phi_{1}\bar{\phi_{1}}\phi_2|</math>
 
In the HLP scheme we search the coefficient of the structures I and II by projection of the Huckel wave function  onto the localized structures <math> \Psi_{I}=|\pi_{12}\bar{\pi_{12}}p_3|</math> and <math>\Psi_{II}=|p_1\pi_{23}\bar{\pi_{23}}|</math>. 
 
======Overlap between Lewis structures ======
 
Within Huckel approximation, (<math> <p_{i}|p_{j}>=\delta_{ij}</math>)
 
*1/ Find that <math> <\Psi_{I}|\Psi_{II}>=-0.25</math>.
 
*2/ Suppose that <math> <\Psi_{I}|\Psi_{Huckel}>=-0.73</math> and <math><\Psi_{II}|\Psi_{Huckel}>=+0.73</math>.
 
Find <math>c_I</math> and <math>c_{II}</math> by solving the equations that derive from
 
**<math><\Psi_I|\Psi_{Huckel}>=<\Psi_I|\Psi_{HLP}></math>
 
**<math><\Psi_{II}|\Psi_{Huckel}>=<\Psi_{II}|\Psi_{HLP}></math>
 
*3/ Compute the trust factor <math>\tau=<\Psi_{HLP}|\Psi_{huckel}></math>
 
 
*4/ Remark: HL-CI fails to give the correct signs because it supposes <math>H_{I-II}<0</math>.
 
This drawback can be shown using the energies of the occupied Huckel orbitals <math> \epsilon_1=\alpha+1.41\beta</math> and<math> \epsilon_2=\alpha</math>
 
 
|}
 
  
  
Ligne 294 : Ligne 236 :
  
 
[[VBFile 4-4 | all input files are there]]
 
[[VBFile 4-4 | all input files are there]]
 +
 +
|}
 +
 +
 +
{| class="collapsible collapsed wikitable"
 +
|-
 +
!<big><big><big>'''Paper Exercices (optional - homework) '''</big></big></big>
 +
|-
 +
|
 +
 +
Here are two HuLiS  exercices : find the weights in formamide with HL-CI and use HLP to get coefficients for the allyl radical.
 +
 +
====Formamide with HL-CI====
 +
[[File:Formamide.png|400px|thumb|right]]
 +
Formamide can be written as a resonance between two Lewis strutures. We shall find the weights of this scheme using HL-CI.
 +
 +
In HL-CI we define an effective CI hamiltonian that concerns the interaction between  the (localized) Lewis structures <math> \Psi_{I}</math> and <math> \Psi_{II}</math>: <math> \Psi_{HL-CI}=c_{I}\Psi_{I}+c_{II}\Psi_{II}</math>. This CI must give the Huckel energy of the delocalized wave function. <math> E_{HL-CI}=E_{Huckel}</math>
 +
 +
*1/ Write the expression of the CI secular determinant that has the energy ot the delocalized wave function, and show that the off-diagonal term is <math>H_{I-II}=0.71\beta</math>. (in HL-CI the off diagonal term is supposed <0).
 +
 +
*2/ Resolve the secular equations of the CI and find that
 +
<math> \Psi_{HL-CI}=0.81\Psi_{I}+0.58\Psi_{II}</math>, hence the weights of the structures (I/II)=(66%/34%)
 +
 +
Note that in HL-CI <math><Psi_{I}|\Psi_{II}>=0</math>
 +
{| class="collapsible collapsed wikitable"
 +
|-
 +
!'''help'''
 +
|-
 +
|
 +
Formamide's Huckel energy <math>E_{Huckel}= 4\alpha + 6.548\beta</math>
 +
 +
The (localized) Lewis structures '''I''' and '''II''' have an energy of
 +
** <math>E_{I}= 2*(\alpha + 1.370\beta)+2*(\alpha+1.651\beta)= 4\alpha + 6.041\beta</math> 
 +
** <math>E_{II}= 2*(\alpha + 1.808\beta)+2*(\alpha+0.970\beta)= 4\alpha + 5.556\beta</math> 
 +
 +
These values are used as  <math>H_{I-I}</math> and <math>H_{II-II}</math> for the CI matrix.
 +
|}
 +
 +
====Allyl Radical with HLP====
 +
[[File:Allyl_radical.png|250px|thumb|right]]
 +
Allyl radical can be written as a resonance between two Lewis strutures: <math> \Psi_{HLP}=c_{I}\Psi_{I}+c_{II}\Psi_{II}</math>.
 +
We shall find the coefficients of this CI via HLP. The Huckel orbitals are considered as :
 +
 +
** <math> \phi_1=0.5 p_1 + 0.7 p_2 + 0.5 p_3 </math>
 +
** <math> \phi_2=0.7 p_1 + 0.0 p_2 - 0.7 p_3 </math>
 +
** <math> \phi_3=0.5 p_1 - 0.7 p_2 + 0.5 p_3 </math>
 +
In the following the Huckel wave function is expressed as a Salter determinant: <math> \Psi_{Huckel}=|\phi_{1}\bar{\phi_{1}}\phi_2|</math>
 +
In the HLP scheme we search the coefficient of the structures I and II by projection of the Huckel wave function  onto the localized structures <math> \Psi_{I}=|\pi_{12}\bar{\pi_{12}}p_3|</math> and <math>\Psi_{II}=|p_1\pi_{23}\bar{\pi_{23}}|</math>. 
 +
======Overlap between Lewis structures ======
 +
Within Huckel approximation, (<math> <p_{i}|p_{j}>=\delta_{ij}</math>)
 +
*1/ Find that <math> <\Psi_{I}|\Psi_{II}>=-0.25</math>.
 +
*2/ Suppose that <math> <\Psi_{I}|\Psi_{Huckel}>=-0.73</math> and <math><\Psi_{II}|\Psi_{Huckel}>=+0.73</math>.
 +
Find <math>c_I</math> and <math>c_{II}</math> by solving the equations that derive from
 +
**<math><\Psi_I|\Psi_{Huckel}>=<\Psi_I|\Psi_{HLP}></math>
 +
**<math><\Psi_{II}|\Psi_{Huckel}>=<\Psi_{II}|\Psi_{HLP}></math>
 +
*3/ Compute the trust factor <math>\tau=<\Psi_{HLP}|\Psi_{huckel}></math>
 +
 +
*4/ Remark: HL-CI fails to give the correct signs because it supposes <math>H_{I-II}<0</math>.
 +
This drawback can be shown using the energies of the occupied Huckel orbitals <math> \epsilon_1=\alpha+1.41\beta</math> and<math> \epsilon_2=\alpha</math>
  
 
|}
 
|}

Version du 6 juillet 2012 à 17:04

<< Return to the program


How to modify this page :

  • first : log in (top right of this page) ;
  • click on [edit] (far right) to edit a section of the page ;
  • write your text directly in the wiki page, and click on the "Save page" button (bottom left) to save your modifications

Pictures : how to insert a picture in your text

See also this page for an introduction to the basics of the wiki syntax


BLW method & HuLiS program