Différences entre les versions de « VBTutorial3 »

De Workshops
Aller à la navigation Aller à la recherche
Ligne 333 : Ligne 333 :
 
|
 
|
 
== Exercise 2 : computation of H—H + H. -> H. + H—H radical exchange VBSCD diagram ==
 
== Exercise 2 : computation of H—H + H. -> H. + H—H radical exchange VBSCD diagram ==
</big>
 
  
 
===1/ Paper exercise :===
 
===1/ Paper exercise :===
Ligne 362 : Ligne 361 :
 
c/ It is known that for strong binders, at any given bonding distance the singlet-triplet transition energy is larger than twice the bonding energy of the dimer at equilibrium distance, so that one can write the approximate expression <big> <math>\Delta E_{ST} </math>' <math> = 2  BDE </math></big>, where <big><math> BDE </math></big> is the bonding energy of the dimer at equilibrium distance. Using the latter expression, express the avoided crossing term <big><math> B </math></big>  as a function of the bonding energy of <big><math> H_{2}</math></big>.
 
c/ It is known that for strong binders, at any given bonding distance the singlet-triplet transition energy is larger than twice the bonding energy of the dimer at equilibrium distance, so that one can write the approximate expression <big> <math>\Delta E_{ST} </math>' <math> = 2  BDE </math></big>, where <big><math> BDE </math></big> is the bonding energy of the dimer at equilibrium distance. Using the latter expression, express the avoided crossing term <big><math> B </math></big>  as a function of the bonding energy of <big><math> H_{2}</math></big>.
  
 +
{| class="collapsible collapsed wikitable"
 +
|-
 +
!'''Answer'''
 +
|-
 +
|
 +
a - Considering the R and R* states for the radical exchange process, the HL wave functions for R and R* are the following :<br>
 +
<math>\psi (R)=(|xa\overline{y}|-|x\overline{a}y|)(1/2)^{-1/2} </math><br>
 +
<math>\psi (R^{*})=(|x\overline{a}y|-|\overline{x}ay|)(1/2)^{-1/2}</math><br>
 +
At the equilibrium distance of R, A and Y are close together while X is far away. Therefore R is stabilized by a covalent bond and its energy is <big><math> 2 \beta S </math></big>. In R*, the AY entity has two parallel spins 50% of the time (a repulsive situation), and alternated spins 50% of the time (a non-bonding situation). Therefore the energy of R* is half a triplet repulsion, i.e. <big><math> - \beta S </math></big>. As <big><math>\Delta E_{ST} (A-Y)= 4  \beta S </math></big>, the final G expression is:<br>
 +
<big><math>G=0.75 \Delta E_{ST} (A-Y)</math></big><br>
 +
 +
b - Let us express the various energies and matrix elements in terms of the usual <big><math> \beta </math></big> and  <big><math> S </math></big> integrals between the X and H orbitals:
 +
 +
<big><math> E_{ind} = 2 \beta S </math></big>
 +
 +
<big><math> S_{12} = 0.5 </math></big>
 +
 +
<big><math> H_{12} = 2 \beta S </math></big>
 +
 +
<big><math> RE = (2 \beta S - 0.5 \beta S )/1.5 = \beta S </math></big>
 +
 +
Since at the transition state geometry <big> <math>\Delta E_{ST} </math>'</big> = <big><math> 4 \beta S </math></big>, we have:
 +
 +
<big> <math>B = 0.25\Delta E_{ST} </math>'</big>
 +
 +
c - Since <big> <math>\Delta E_{ST} </math>' <math> = 2  BDE </math></big>, we may re-express the avoided crossing term as:
 +
 +
<big> <math>B = 0.5BDE </math></big>
 +
|}
  
 
=== 2/ Computer exercise ===  
 
=== 2/ Computer exercise ===  

Version du 12 juillet 2012 à 12:00

<< Return to the program


Valence Bond State correlation diagrams

Exercise 1 : Computation of state correlation Diagrams for a 3 centers / 4 electrons system

In this exercise the <math>\textrm{S}_{\textrm{N}}2</math> reaction Cl<math>{}^{-}</math> + CH3Cl -> ClCH3 + Cl<math>{}^{-}</math> will be studied in both vacuum and solution. Valence Bond State Correlation Diagrams (VBSCD) will be constructed at <math>\pi</math>-D-BOVB level. There are two parts in this exercise: basic part and optional part. The basic part is performed with MCP-DZP basis set in which the inner orbitals in Cl and C are described with MCP pseudo potential. The optional part is performed with 6-31+G* basis set, using the general specification for the xmvb input (expert users). Only reactant and transition state will be computed in this exercise, which is sufficient to build the VBSCD diagrams.

>> general guidelines for BOVB calculations