VBTutorial1

De Workshops
Aller à la navigation Aller à la recherche

<< Return to the program


How to modify this page :

  • first : log in (top right of this page) ;
  • click on [edit] (far right) to edit a section of the page ;
  • write your text directly in the wiki page, and click on the "Save page" button (bottom left) to save your modifications

Pictures : how to insert a picture in your text

See also this page for an introduction to the basics of the wiki syntax


Basics of VB theory and XMVB program


Remarks

>> Initial remarks for tutors

Exercices

Exercise 1 (paper exercise) : The lone pairs of H<math>{}_2</math>O

This exercise aims at comparing two descriptions of the lone pairs of H<math>{}_2</math>O : (i) the MO description in terms of non-equivalent canonical MOs and (ii) the « rabbit-ear » VB description in terms of two equivalent hybrid orbitals.

H2o ex1.png
<math>\Psi_{\textrm{MO}}</math>   <math>\Psi_{\textrm{VB}}</math>


  1. Focusing on the lone pairs only, write the four-electron single-determinants <math>\Psi_{\textrm{MO}} </math> and <math>\Psi_{\textrm{VB}} </math> .
  2. Expand <math>\Psi_{\textrm{VB}} </math> into elementary determinants containing only <math>n</math> and <math>p</math> orbitals, eliminate determinants having two identical spinorbitals, and show the equivalence between <math>\Psi_{\textrm{VB}}</math> and <math>\Psi_{\textrm{MO}}</math>.
  3. We now remove one electron from H<math>{}_2</math>O. Write the two possible VB structures <math>\Phi_1</math> and <math>\Phi_2</math> in the VB framework.
  4. The two ionized states are the symmetry-adapted combinations <math>\frac{1}{2}\left(\Phi_1-\Phi_2\right)</math> and <math>\frac{1}{2}\left(\Phi_1+\Phi_2\right)</math>. From the sign of the hamiltonian matrix element <math>\langle \Phi_1 \vert \hat{H} \vert \Phi_2 \rangle</math>, give the energy ordering of the two ionized states.
  5. By expanding the two ionized states into elementary determinants (dropping the normalization constants), show that they are equivalent, respectively, to the MO configurations <math>\vert nn\bar{p}\vert</math> and <math>\vert pp\bar{n}\vert</math>.

Appendix

Hamiltonian matrix element between determinants differing by one spin-orbital :

<math>\langle \cdots i \cdots \vert \hat{H} \vert \cdots j \cdots\rangle = \beta_{ij}</math>

>> Answer

Exercise 2 : Starting up with the H2 molecule

Two Gamess and XMVB input files for the H2 molecule are provided in the Exercise folder on the tutorial machines :

  • the file h2-atom.xmi input uses the fragment specification in terms of atoms (frgtyp=atom) ;
  • the file h2-sao.xmi input uses the fragment specification in terms of symmetry-adapted orbitals (frgtyp=sao).

There are VBSCF calculations with the 6-31G(d,p) basis set. Just inspect these inputs, run the gamess-xmvb program (using : vbrun h2-atom and : vbrun h2-sao, and inspect the outputs.

Then these input files could serve you as templates for the next exercises.

Exercise 3 : Influence of correlation on HF molecule weights

  1. Compute a VBSCF wave function for the HF molecule, using the frgtyp=sao specification


>> Hints and remarks

Exercice 3 : Dissociation of C(Me)3-Cl and solvent effect

Subject

First calculation beyond diatomics (fragment C(Me)3 and Cl). VB(PCM) method.

To do

  • Compute of C(Me)3-Cl at equilibrium distance at the VBSCF and D-BOVB levels.
  • Compute C(Me)3-Cl at large inter fragment distance (5Å ?), at the D-BOVB level.
  • Redo previous questions using the VB(PCM) option.

Access to files :

title title