VBTutorial4

De Workshops
Aller à la navigation Aller à la recherche

<< Return to the program


How to modify this page :

  • first : log in (top right of this page) ;
  • click on [edit] (far right) to edit a section of the page ;
  • write your text directly in the wiki page, and click on the "Save page" button (bottom left) to save your modifications

Pictures : how to insert a picture in your text

See also this page for an introduction to the basics of the wiki syntax


BLW method & HuLiS program


To the Tutors

Sason remarks and prospective 2 hours talk +

Philippe's remark on the initially proposed tutorial. are included in bold.

Qualitative

  • ?...

Computational

Proposal from Yirong

  1. benzene and formamide - focus is on the structural and energetic impact from conjugation, and how to correlate the results with experimental evidences;
  2. butadiene - focus is on the conjugation in the planar structure and the hyperconjugation in the staggered structure, and their impact on the rotational barrier;
  3. acid-base and H-bonding systems: BLW energy decomposition analyses.
  4. visualize the results. I have been using GaussView and ChemDraw, but other graphical software should be fine with me as well.
  5. Questions from any participant can be discussed and tested on site.

BLW within GAMESS (Version: MAR-25-2010 R2)

BLW is provided by Yirong Mo (Western Michigan University - USA). It allows to optimize local wave function. Gradients are available for geometry optimization. DFT approaches allow to include a part of correlation into the structure.

During the workshop, a BLW computation is obtained with the command "rungms file.inp -v BLW "

Note: Eigenvalues and compositions of BLW-MOs are stored in $SCR/*.blw.

BLW help

HuLiS : a Huckel-based code

Huckel - Lewis alt text
Huckel - Lewis

HuLiS is provided by Stephane Humbel (Aix-Marseille Université - France).

This is a "Click-click-get" java applet that deals with Huckel and Lewis structures It computes coefficients and weights of mesomeric structures through two different approaches: the energy related approach is a simulated CI (HL-CI - deprecated); the wave function approach is a projection of Lewis structures onto a Huckel derived wave function(HL-P). This second approach is better.

HuLiS is launch with the command "java hulis.jar" or via the web site HuLiS

Paper Exercices

Here two HuLiS exercices : compute weight in formamide with both HL-CI and HL-P (2x2) mesomery.

Extend to allyl radical ? find the anti-resonant ground state. Show why HL-CI is deprecated.

Computer Exercices

Exercice 1 (Lewis structures of benzene, resonance) B3LYP/6-311+G* level

Subject

The benzene molecule is commonly represented as the resonance between the two Kékulé structures. The aim of the exercise is to understand the relative importance of the different Lewis structures in the benzene molecule using BLW and HuLis.

According to IUPAC’s Goldbook, resonance energy is defined as “The difference in potential energy between the actual molecular entity and the contributing structure of lowest potential energy”. However this definition does not precise what is the geometry of the contributing structure of lowest potential energy. Consequently, we can define two type of resonance energy: the vertical resonance energy (VRE) and the adiabatic resonance energy (ARE). This exercice tutorial will guide us toward Lewis structures and resonance of benzene.

To do

1/ Vertical Resonance Energy - at the geometry of benzene:

 $DATA
 B3LYP/6-311+G*
 C1  
 C     6.0     0.000000     0.000000     1.395201
 C     6.0     1.208097     0.000000     0.697641
 C     6.0     1.208090     0.000000     -0.697641
 C     6.0     0.000000     0.000000     -1.395201
 C     6.0     -1.208090     0.000000     -0.697639
 C     6.0     -1.208090     0.000000     0.697639
 H     1.0     0.000000     0.000000     2.481104
 H     1.0     2.148596     0.000000     1.240288
 H     1.0     2.148596     0.000000     -1.240288
 H     1.0     0.000000     0.000000     -2.481104
 H     1.0     -2.148593     0.000000     -1.240288
 H     1.0     -2.148593     0.000000     1.240288
 $END

2/ Adiabatic Resonance Energy - relax the Lewis structure geometry

3/ Evaluate the space spanned by lewis structures as compared to that of delocalized wave functions


Step by step help :

1/ With the BLW program, and using the provided optimized geometry of benzene molecule, define one 1,3,5-cyclohexadiene Lewis structure, and optimize it's orbitals. 4 blocks need to be defined 3 blocks for 3 pi bond, one for all the sigma electrons.

by compairison to benzene energy, calculate the Vertical Resonance Energy (VRE).

2/ With the BLW program, relax the Lewis' structure geometry.

Compare the C-C bond distances to benzene's. Ensure that it is consistent with the Lewis structure.
Compute the Adiabatic Resonance Energy (ARE) and comment.
Compare the resonance energies computed by the BLW method to the conventional experimental resonance energy based on the hydrogenation heats of benzene and cyclohexene. [value to get]

3 – With the hulis program:

Draw the benzene with the Huckel tools (blue, left) and create two Kekules structures with the Lewis tools. Double bonds are obtained by clicking a single bond - A second click returns to the Single bond.
Note the low value of the trust factor <math>{\tau}</math>.
Add to the wave function the 3 covalent Dewar structures.
How does <math>{\tau}</math> vary?
Remove all structures [Erase Mesomery] and automatically generate all possible structures having one charge separation:
<mode><expert mode> [Generate all]
Note the value of <math>{\tau}</math>, and the weight of all Lewis structures needed ([Results]).

Access to files :

.inp


Exercice 2 (allyl)

butadiene.xmi


Exercice 3 (title)

butadiene.xmi

Exercice 4 (BH3... NH3) electronics at the B3LYP 6-31G(d) level

BLW energy decomposition analysis can be used to shed light into the nature of intermolecular interactions. Example of NH3∙∙∙BH3. Visualize the polarization and electron transfer effects using the electron density difference (EDD) maps.

1/ Make orbitals of BH3 alone (then NH3) in the geometry of the complex

 $DATA
 BLW-ED Analysis
 C1  
 N   7.0        0.000000    0.000000    0.728869
 H   1.0        0.000000    0.951707    1.095972
 H   1.0        0.824202   -0.475853    1.095972
 H   1.0       -0.824202   -0.475853    1.095972
 B   5.0        0.000000    0.000000   -0.934793
 H   1.0        0.000000   -1.170908   -1.238679
 H   1.0       -1.014036    0.585454   -1.238679
 H   1.0        1.014036    0.585454   -1.238679 
 $END

2/ Let fragment orbitals to polarize in the full complex.

3/ Let delocalize. This is just a standard DFT calculation. (TO CHECK with Yirong)

Preliminary Remarks : B3LYP calculation in Gamess is specified in $CONTRL :

 $CONTRL SCFTYP=RHF DFTTYP=B3LYP runtyp=energy maxit=200 icharg=0 $END

And 6-31G(d) basis set is requested with

  $BASIS  GBASIS=N31 NGAUSS=6 NDFUNC=1 $END

Step by step help :

1/ Perform a NH3 BLW calculation of the fragment alone in the geometry of the complexe with $BLW NBLOCK=1 and keep the .blw file for next step (same for BH3).

We obtain

nh3.log: FINAL R-B3LYP ENERGY IS -56.5111505350

bh3.log: FINAL R-B3LYP ENERGY IS -26.5644674370

= > summ = -83.07561797

2/ Do the complex in a NBLOCK=2 BLW calculation and see the polarization of each fragment. The initial orbitals are obtained from .blw files of individual fragments ---ORBITALS (LOCAL BFS)--- part, and copied after the $BLWDAT fragments definition. A blank line separate each fragments’guess.

At this stage, we can want to do the calculation at full accuracy from the very first step. The following line avoid initial SCF cycles (SWOFF=0.0), and initial coarse grid DFT steps :

 $DFT SWOFF=0.0 NRAD0=96 NLEB0=302 NTHE0=12 NPHI0=24 $END

We obtain

ITER 1 E(RBLW) = -83.05921870

FINAL R-B3LYP ENERGY IS -83.0932178520

3/ We let not only the doublet to delocalize but all electrons. TO CHECK with Yirong

We obtain

FINAL R-B3LYP ENERGY IS -83.1480131227 AFTER 12 ITERATIONS

all input files are there