Abstracts of the CTTC School 2016

De Workshops
Aller à la navigation Aller à la recherche

<<< CTTC School 2016 main page


Carlos Cárdenas

Universidad de Chile

Summary


Eduard Matito

Universidad País Vasco

Summary


Andreas Savin

Univ. Pierre et Marie Curie

Summary


Cyrus Umrigar

Cornell Univ.

Summary


Development

Paul Ayers

McMaster Univ.

Summary


José Luis Gazquez

UNAM-Iztapalapa

Summary


Peter Gill

Austr. Nat. Univ.

Summary


Miquel Huix

Université Aix-Marseille

Summary


Materials

Perla Balbuena

Texas A&M University

Summary


Varinia Bernales

Minesotta U.

Summary


Juan Peralta

Central Michigan Univ.

Summary


Jorge Seminario

Texas A&M University

Summary


Chemical Bonding

Marco García-Revilla

Univ. Guanajuato

Summary The study of the Chemical Bond belongs to the most important issues in Chemistry. The new methodologies in this field enable us to rationalize chemical phenomenon where the traditional models fail. The Interacting Quantum Atoms (IQA)[1,2] and the Electron Distribution Functions EDF[3] belong to such new methodologies. IQA and EDF have been shown to be successful to deal with the study of the Chemical Bond. Two studies are presented in this lecture. 1) Oxygen under extreme pressure conditions, the unexplained physicochemical behavior of O2 under pressure can be finally rationalized by the IQA and EDF methodology.[4] 2) Constructing molecular graphs from IQA bonding descriptors, the exchange-correlation energies can be used to draw molecular graphs with physical insight.[5]


[1] A. Martín Pendás, M. A. Blanco, and E. Francisco. J. Chem. Phys. 2004, 120, 4581; J. Comput. Chem. 2005, 26, 344; J. Chem. Theory Comput. 2005,1,1096; J. Comput. Chem. 2007, 28, 16;. A. Martín Pendás, M. A. Blanco, and E. Francisco. J. Chem. Phys. 2006, 125. 184112 A. Martín Pendás, M. A. Blanco,and E. Francisco. J. Comput. Chem. 2009, 30, 98; D. Tiana et al. J. Chem.Theory Comput. 2010, 6, 1064; D. Tiana et. al. Phys. Chem. Chem. Phys. 2011,13, 5068. [2] A. Martín Pendás, E. Francisco, M. A. Blanco, and Carlo Gatti. Chem. Eur. J. 13, 9362 (2007). [3] E. Francisco, A. Martín Pendás, M. A. Blanco. J. Chem. Phys. 126, 094102 (2007); E. Francisco, M. A. Blanco , A. Martín Pendás. Comp. Phys. Commun. 178, 621 (2008); A. Martín Pendás, E. Francisco, M. A. Blanco, Phys. Chem. Chem. Phys. 9, 1087 (2007). [4] M. A García-Revilla, E.Francisco, A.Martín Pendás, J.M.Recio, M.I.Hernández, J. Campos-Martínez, E. Carmona-Novillo, and R. Hernández-Lamoneda. J. Chem. Theory Comput., 9, 2179 (2013). [5] M. A García-Revilla, E. Francisco, PL. Popelier, and A. Martín Pendás. Chemphyschem, 14,1211 (2013).

Ángel Martín Pendás

Universidad de Oviedo. Spain.

A real space perspective of how energy and electrons distribute in molecules: Interacting quantum atoms and electron distribution functions


The topological approach to chemical bonding in real space, or Quantum Chemical Topology (QCT) has now come of age. Its best known flavor, the Quantum Theory of Atoms in Molecules (QTAIM) [1] has been extremely successful, providing an orbital invariant theory of chemical bonding problems based on an observable, the electron density, amenable to experimental determination. In this course we will consider the basics of QCT as well as two development that expands its scope and predictive power: the Interacting Quantum Atoms (IQA) [2-3] approach, which provides an exact energetic decomposition within the QTAIM valid at general geometries, and the electron distribution functions (EDF) [4].

[1] R. F. W. Bader, Atoms in Molecules , Oxford University Press., Oxford (1990). [2] A. Martín Pendás, M. A. Blanco, and E. Francisco. J. Chem. Phys. 2004, 120, 4581; J. Comput. Chem. 2005, 26, 344; J. Chem. Theory Comput. 2005, 1, 1096; J. Comput. Chem. 2007, 28, 16;. A. Martín Pendás, M. A. Blanco, and E. Francisco. J. Chem. Phys. 2006, 125. 184112 A. Martín Pendás, M. A. Blanco, and E. Francisco. J. Comput. Chem. 2009, 30, 98; D. Tiana et al. J. Chem. Theory Comput. 2010, 6, 1064; D. Tiana et. al. Phys. Chem. Chem. Phys. 2011, 13, 5068. [3] A. Martín Pendás, E. Francisco, M. A. Blanco, and Carlo Gatti. Chem. Eur. J. 13, 9362 (2007). [4] E. Francisco, A. Martín Pendás, M. A. Blanco. J. Chem. Phys. 126, 094102 (2007); E. Francisco, M. A. Blanco , A. Martín Pendás. Comp. Phys. Commun. 178, 621 (2008); A. Martín Pendás, E. Francisco, M. A. Blanco, Phys. Chem. Chem. Phys. 9, 1087 (2007).

Summary

Eloy Ramos-Cordoba

Berkeley Univ.

Summary


Pedro Salvador

Universitat de Girona

Summary