Différences entre les versions de « VBTutorial2 »

De Workshops
Aller à la navigation Aller à la recherche
Ligne 236 : Ligne 236 :
  
 
</math><br> (consult the following paper exercise)
 
</math><br> (consult the following paper exercise)
 +
 +
{| class="collapsible collapsed wikitable"
 +
|-
 +
!'''Anwser'''
 +
|-
 +
|
 +
#Complete set of the non-redundant VB structures of the ozone are  <br/>[[File:Ozone-full.png|450px]]<br> <math> \Phi_{\textrm{1}}= \frac{1}{\sqrt2}(\vert p_1\overline p_1p_2\overline p_3\vert + \vert p_1\overline p_1p_3\overline p_2\vert)
 +
</math><br>  <math>
 +
\Phi_{\textrm{2}}= \frac{1}{\sqrt2}(\vert p_3\overline p_3p_1\overline p_2\vert + \vert p_3\overline p_3p_2\overline p_1\vert) 
 +
</math><br>  <math>
 +
\Phi_{\textrm{3}}= \frac{1}{\sqrt2}(\vert p_2\overline p_2p_1\overline p_3\vert + \vert p_2\overline p_2p_3\overline p_1\vert)
 +
</math><br>  <math>
 +
\Phi_{\textrm{4}}= \vert p_1\overline p_1p_3\overline p_3\vert
 +
</math><br> <math>
 +
\Phi_{\textrm{5}}= \vert p_1\overline p_1p_2\overline p_2\vert
 +
</math><br> <math>
 +
\Phi_{\textrm{6}}= \vert p_2\overline p_2p_3\overline p_3\vert
 +
 +
</math><br>                  <br> The structures <math> \Phi_{\textrm{5}}</math> and <math> \Phi_{\textrm{6}}</math> are expected to be high on energy and therefore will not be included in our chosen sub-set of structures.<br>  <br>
 +
 +
Answer for 2-4:
 +
* The total energy of the VB wave function of ozone is summarized in the following Table:
 +
<br>
 +
 +
{| border="1"
 +
|+ VB energies of the ozone
 +
! scope="col" | Structures & Method
 +
! scope="col" | Total Energy (au)
 +
|-
 +
! scope="row" | 3 cov + 1 ionic (VBSCF)
 +
| -224.22969470
 +
|-
 +
! scope="row" | Str=full (VBSCF)
 +
| -224.23481239
 +
|-
 +
! scope="row" | 3 cov + 1 ionic (BOVB)
 +
| -224.29172132
 +
|}
 +
<br>
 +
The energy difference is -2.25 kcal/mol within the VBSCF. Comparison of VBSCF with BOVB both only using the selected subset, one gets a difference of -13.88 kcal/mol<br>
 +
<br>
 +
* The weights of the VB wave function of ozone are summarized in the following Table:
 +
<br>
 +
 +
{| border="1"
 +
|+ Weights of the VB structures of the ozone
 +
! scope="col" |
 +
! scope="col" | Str=full (VBSCF)
 +
! scope="col" | 3 cov + 1 ion (VBSCF)
 +
! scope="col" | 3 cov + 1 ion (BOVB)
 +
|-
 +
! scope="row"      |<math>\phi_1</math> 1:10 11 11 12 13 
 +
| 0.15232  || 0.14942 ||  0.23026 
 +
|-
 +
! scope="row"    | <math> \phi_2 </math> 1:10 13 13 11 12
 +
| 0.15232 || 0.14942 || 0.23026 
 +
|-
 +
! scope="row"      | <math> \phi_3 </math> 1:10 12 12 11 13
 +
| 0.66330  || 0.68922  || 0.47772 
 +
|-
 +
! scope="row"    | <math>\phi_4 </math> 1:10 11 11 13 13
 +
| 0.01279  || 0.01195    || 0.06177
 +
|-
 +
! scope="row"    | <math> \phi_5 </math> 1:10 11 11 12 12
 +
|  0.00963 
 +
|-
 +
! scope="row"    | <math> \phi_6 </math> 1:10 12 12 13 13
 +
| 0.00963
 +
|}
 +
 +
<br>
 +
Thus, according to the BOVB calculation the radical character of ozone is significant, 48% (!) compared to only 12.5% within simplified MO (see solution for paper exercise below).
 +
 +
|}
  
 
|}
 
|}

Version du 12 juillet 2012 à 09:41

<< Return to the program


VB applications on PI systems

In all the following exercises, <math>\pi</math> the system will be taken as active, and the <math>\sigma</math> system as inactive. In all VB calculations, the <math>\sigma</math> orbitals shall be described by MOs delocalized onto the whole molecule.




>> general guidelines for BOVB calculations