Différences entre les versions de « VBTutorial2 »

De Workshops
Aller à la navigation Aller à la recherche
Ligne 326 : Ligne 326 :
 
|
 
|
 
- It is useful to use here the electron hole equivalence for details consult:
 
- It is useful to use here the electron hole equivalence for details consult:
[[The electron-hole equivalence|>> ''The electron-hole equivalence'']]
+
 
 +
{| class="collapsible collapsed wikitable"
 +
|-
 +
!<small>''' The electron-hole equivalence '''</small>
 +
|-
 +
|
 +
In the present case, this equivalence can be used to transform a problem of 4-orbital determinants into a simpler problem of 2-orbital determinants.
 +
This goes as follows. Whether we reason in the MO framework or in the VB framework, the basis set of orbitals is made of 3 spin-up spinorbitals and 3 spin-down ones. So for each 4-e determinant involving 4 occupied spin-orbitals, we can define a 2-hole determinant involving 2 spin-orbitals, filled with « holes ». Holes have spins and can be represented by up or down arrows just like electrons. There is a one-to-one correspondence between the electron-determinants and the hole-determinants, as shown below :
 +
<br>
 +
<br>
 +
<center>
 +
{| class="wikitable"
 +
|-
 +
! electron-filled determinants !!  !! hole-filled determinants
 +
|-
 +
|-
 +
| [[File:electron-trick.png|75px]] ||    || [[File:hole-trick.png|75px]]
 +
|-
 +
|-
 +
| <math> \vert \varphi_1\bar{\varphi_1}\varphi_2\bar{\varphi_2}\vert </math> || <=>  || <math>\vert \varphi_3\bar{\varphi_3}\vert </math>
 +
|-
 +
|-
 +
| Expand into ||  || Expand into
 +
|-
 +
|-
 +
| <math> \Phi_{\textrm{1}}= \frac{1}{\sqrt2}(\vert p_1\overline p_1p_2\overline p_3\vert + \vert p_1\overline p_1p_3\overline p_2\vert </math> || <=> || <math> \frac{1}{\sqrt2}(\vert p_2\overline p_3 \vert + \vert p_3\overline p_2\vert </math>
 +
|-
 +
|-
 +
| <math> \Phi_{\textrm{2}}= \frac{1}{\sqrt2}(\vert p_3\overline p_3p_1\overline p_2\vert + \vert p_3\overline p_3p_2\overline p_1\vert </math> || <=> || <math> \frac{1}{\sqrt2}(\vert p_1\overline p_2 \vert + \vert p_2\overline p_1\vert </math>
 +
|-
 +
|-
 +
| <math> \Phi_{\textrm{3}}= \frac{1}{\sqrt2}(\vert p_2\overline p_2p_1\overline p_3\vert + \vert p_2\overline p_2p_3\overline p_1\vert </math> || <=> || <math> \frac{1}{\sqrt2}(\vert p_1\overline p_3 \vert + \vert p_3\overline p_1\vert </math>
 +
|-
 +
|-
 +
| <math> \Phi_{\textrm{4}}= \vert p_1\overline p_1p_3\overline p_3\vert </math> || <=> || <math> \vert p_2\overline p_2 \vert </math>
 +
|-
 +
|-
 +
| <math> \Phi_{\textrm{5}}= \vert p_1\overline p_1p_2\overline p_2\vert </math> || <=> || <math> \vert p_3\overline p_3 \vert </math>
 +
|-
 +
|-
 +
| <math> \Phi_{\textrm{6}}= \vert p_2\overline p_2p_3\overline p_3\vert </math> || <=> || <math> \vert p_1\overline p_1 \vert </math>
 +
|}
 +
</center>
 +
<br>
 +
So instead of expanding the Hartree-Fock electron determinant <math> \vert \varphi_1\bar{\varphi_1}\varphi_2\bar{\varphi_2}\vert </math> into VB structures, which is complicated, we better expand the smaller complementary hole-determinant <math>\vert \varphi_3\bar{\varphi_3}\vert </math> into VB structures where each contains two holes. Once this is done, it suffices to use the table above to go back to the 4-electron VB structures (e.g. <math> \vert p_2\overline p_2 \vert </math> => <math> \vert p_1\overline p_1p_3\overline p_3\vert </math> and so on). This latter transformation gives us the final 4-e VB function.
 +
|}
 +
 
 +
{| class="collapsible collapsed wikitable"
 +
|-
 +
!<big>'''BLW within GAMESS (Version: MAR-25-2010 R2)'''</big>
 +
|-
 +
|
 +
# The MO orbitals in the Huckel approximation for ozone are: <br>  <math>
 +
\varphi_1 = \frac{1}{2}(p_1 + \sqrt{2}p_2 + p_3) </math> <br> <math>
 +
\varphi_2 = \frac{1}{\sqrt2}(p_1 - p_3)</math> <br> <math>
 +
\varphi_3 = \frac{1}{2}(p_1 - \sqrt{2}p_2 + p_3)
 +
 
 +
</math> <br> <br> A single-determinant MO wavefunction of ozone based on these Hückel orbitals would look as follows: <br> <math>
 +
      \psi_{H\ddot{u}ckel} = \vert \varphi_1\bar{\varphi_1}\varphi_2\bar{\varphi_2}\vert =
 +
                      \vert [\frac{1}{2}(p_1 + \sqrt{2}p_2 + p_3)][\overline{\frac{1}{2}(p_1 + \sqrt{2}p_2 + p_3)]}[\frac{1}{\sqrt2}(p_1 - p_3)][\overline{\frac{1}{\sqrt2}(p_1 - p_3)]} \vert
 +
 
 +
</math> <br> However, we can simplify the problem by using the electron/hole equivalence: [[The electron-hole equivalence|>> ''the electron-hole equivalence'']]<br>        <br> Thus, we simply replace holes by electrons and vise versa in <math> \psi_{H\ddot{u}ckel} </math> getting a function of <math> {\psi_{H\ddot{u}ckel}}^{hole} </math>, which we will then expande in terms of VB structures. Finally, we will perform the back hole-electron transformation in the VB representation to get the final result. This way we transform a 4e-3c problem into 2h-3c one.<br>                <br>  <math>
 +
 
 +
{\psi_{H\ddot{u}ckel}}^{hole} = \vert \varphi_3\bar{\varphi_3}\vert = \frac{1}{4} \vert (p_1 - \sqrt{2}p_2 + p_3)\overline{(p_1 - \sqrt{2}p_2 + p_3)} \vert
 +
 
 +
</math><br>  <br>  Expanding into AO determinants, we get:<br>                  <br>    <math>
 +
 
 +
{\psi_{H\ddot{u}ckel}}^{hole} = \frac{1}{4} (\vert (p_1\overline p_3 \vert + \vert (p_3\overline p_1 \vert) - \frac{\sqrt{2}}{4}(\vert p_1\overline p_2 \vert + \vert p_2 \overline p_1 \vert) - \frac{\sqrt{2}}{4}(\vert p_2\overline p_3 \vert + \vert p_3 \overline p_2 \vert) + \frac{1}{4} \vert p_1\overline p_1 \vert + \frac{1}{4} \vert p_3\overline p_3 \vert + \frac{1}{2} \vert p_2\overline p_2 \vert
 +
 
 +
</math><br>              <br>    Doing the electron-hole back transformation, we get: <br>  <br>    <math>
 +
 
 +
\psi_{H\ddot{u}ckel} = \frac{\sqrt{2}}{4}\Phi_3 - \frac{1}{2}\Phi_1 - \frac{1}{2}\Phi_2 + \frac{1}{4}\Phi_6 + \frac{1}{4}\Phi_5 + \frac{1}{4}\Phi_4
 +
 
 +
</math><br>            <br>
 +
#The corresponding weights while neglecting overlap (for simplicity) are therefore:<br>          <br><math>
 +
 
 +
\psi_{H\ddot{u}ckel} =
 +
        25%\Phi_1 +
 +
        25%\Phi_2 + 12.5%\Phi_3 +
 +
        25%\Phi_4 + 6.25%\Phi_5 +
 +
        6.25%\Phi_6
 +
 
 +
</math><br> <br>Thus, according to simple MO theory the radical character of ozone is 12.5%.
 +
|}
 +
 
 
|}
 
|}
  

Version du 12 juillet 2012 à 09:46

<< Return to the program


VB applications on PI systems

In all the following exercises, <math>\pi</math> the system will be taken as active, and the <math>\sigma</math> system as inactive. In all VB calculations, the <math>\sigma</math> orbitals shall be described by MOs delocalized onto the whole molecule.




>> general guidelines for BOVB calculations